
Database solutions

Selected SQL commands – part 1

Marzena Nowakowska
Faculty of Management and Computer Modelling

Kielce University of Technology

room: 3.21 C

SQL syntax

A syntax is like template which tells what is required (permitted) for a given

command.

Conventions used for the SQL syntax:

• SQL keywords are in uppercase letters, although in practice they can

be in any case,

• words or phrases which should be supplied are in lowercase letters –

they are placeholders for values (constants, expressions, identifiers –

names of databases, tables, or other database objects),

• curly brackets { } around a list of words or phrases separated by

vertical bars means that one of these options must be taken to the

command,

• square brackets [] indicate optional occurrence of words or phrases.

Each SQL command ends with a semicolon (;).

Fundamental ideas

DML – Data Manipulation Language

Data manipulation is retrieving and modifying data through SQL commands:

• SELECT

• INSERT

• DELETE

• UPDATE

DDL – Data Definition Language

Data definition operates on data structure:

• CREATE

• DROP

• ALTER

DCL – Data Control Language

Data controlling is used to control access to data stored in a database:

• GRANT

• REVOKE

• DENY

SELECT command

SELECT [modifier]

{ * | table.* | [table.]field1 [AS alias1] [, [table.]field2 [AS alias2] [, ...]]}

FROM table_expression [, ...]

[WHERE condition]

[GROUP BY field_list]

[HAVING group_condition]

[ORDER BY sort_field1 [ASC | DESC][, sort_field2 [ASC | DESC][,

...]]];

The command retrieves data from a table or from multiple tables.

modifier = {ALL | DISTINCT} (ALL is a default value)

specification what to do with duplicates in the resulting records

table name of a table from which records are retrieved; * defines all fields

from a given table; ALL is a default value

field either a table field name or a calculated field the value of which is to be

presented; calculated fields are expressions created with the use of field

names, constants, operators, and functions

alias an alternative name for a field

table_expression

name of a table, a named query, or a result of a join operation (INNER

JOIN, LEFT JOIN, RIGHT JOIN)

condition criterion imposed on retrieved records

field_list list of fields separated by comas, by which records are grouped

group_condition

criterion imposed on a group (used with GROUP BY clause)

sort_field either a table field or a calculated field according to which records are

sorted

SELECT command description

SELECT command – modifier

SELECT Book.Title, Author

FROM Book;

SELECT ALL Book.Title, Author

FROM Book;

Result: 25 records

the same

SELECT command – modifier

SELECT DISTINCT Book.Title,

Author

FROM Book;

Result: 19 records. Tere are more

than one volume of the same title

and the same author but only one

is shown

SELECT command - table_expression

The term table_expression defines a recordset that is selected form the dabatase:

• a single table

• multiple tables (sometimes that have very little in common); JOINs are relational

operators that combine data from multiple table into a single result table. The

source tables are joined in the sense that the resulting table includes information

taken from all the source tables.

Consider the following tables

Basic JOIN

SELECT Department.*, Employee.* FROM Department, Employee;

The result table is the Cartesian product of the Employee and the Department

tables; it combines every row of Employee with every row of Department.

Not only it contains considerable redundancy but also it doesn’t make much sense.

Those rows in which the department identifier from the Department table is equal

to department identifier from the Employee table indicate a correct combination of

information.

Equi-join
This is a basic join with a WHERE clause containing a condition specifying that the

value in one column in the first table must be equal to the value of a corresponding

column in the second table.

SELECT Department.*, Employee.*

FROM Department, Employee

WHERE Department.Dept_ID = Employee.Dept_ID;

The version with aliases (attention: depending on a DBMS the table aliases can be

defined in a different way) is as follows:

SELECT D.*, E.*

FROM Department AS D, Employee AS E

WHERE D.Dept_ID = E.Dept_ID;

INNER JOIN

The inner join is a special case of an equi-join. A column from one source table is

compared with a column of a second source table for equality. The two columns

must be the same type.

An inner join discards all rows form the result table that don’t have corresponding

rows in both source tables. The common fields (responsible for the join) can have

different names.

SELECT Department_a.*, Employee.*

FROM Department_a INNER JOIN Employee ON Department_a.ID =

Employee.Dept_ID;

Outer JOIN
When an inner join is performed on tables, all unmatched rows are excluded from

the output. Outer joins, however, do not exclude the unmatched rows.

In a query that includes the JOIN operator, the left table is the one that precedes the

keyword JOIN and the right table is the one that follows the keyword JOIN.

The left table may have rows that don’t have matching counterparts in the right

table. Conversely, the table on the right may have rows that don’t have matching

counterparts in the left table,

Consider the following tables

LEFT (outer) JOIN
The left join preserves unmatched rows from the left table but discards unmatched

rows from the right table.

SELECT Department.Dept_ID, Department.Dept_name, [Dep-

Advert].Dept_ID, AdvAgency.Agency_name, AdvAgency.Agency_ID

FROM

(Department LEFT JOIN [Dep-Advert]

ON Department.Dept_ID = [Dep-Advert].Dept_ID)

LEFT JOIN AdvAgency

ON [Dep-Advert].Agency_ID = AdvAgency.Agency_ID;

All departments are included, even if no advertisement was ordered by them.

For those (non-advert) departments respective fields have null values.

RIGHT(outer) JOIN
The right join preserves unmatched rows from the right table but discards

unmatched rows from the left table.

SELECT Department.Dept_ID, Department.Dept_name,

[Dep-Advert].Agency_ID, AdvAgency.Agency_name, AdvAgency.Agency_ID

FROM

(Department RIGHT JOIN [Dep-Advert]

ON Department.Dept_ID = [Dep-Advert].Dept_ID)

RIGHT JOIN AdvAgency

ON [Dep-Advert].Agency_ID = AdvAgency.Agency_ID;

All advert agencies are included, even if some of them were not ordered

advertisements form the departments. For those (non-ordered) agencies respective

fields have null values.

WHERE clause

The clause defines criterion (condition) which have to be satisfied by records. The

criterion is a logical expression that can consists of expression of different types,

such as text, date, and numerical expression. The following operators can be used

to create an expression:

• comparison operators: =, >, >=, <, <=, <> (not equal to symbol may depend on

a DBMS)

• logical operators: AND (conjunction), OR (alternative), NOT (negation),

• arithmetical operators: + (addition), - (subtraction), * (multiplication), / , \

(division) : 5/2 -> 2.5 whereas 5\2 -> 2

• BETWEEN operator enables to define a range of values in the condition

• IN operator enables to define a list of values specified in the condition

• IS NULL operator enables to indicate null values

• LIKE operator enables to define a patterns of characters; the operator is used

with wildcards: * (or %) represents any collection of characters, _ (or ?)

represents any single character

WHERE clause examples

Selection of values within a specified range:

SELECT * FROM Foods WHERE Calories >99 AND Calories<301;

SELECT * FROM Foods WHERE Calories >=100 AND Calories <=300;

SELECT * FROM Foods WHERE Calories BETWEEN 100 AND 300;

Provided that Calories are integer numbers

Selection of values within a specified list:

SELECT Title, Author, Editor FROM Book WHERE Price IN (100, 50, 150);

SELECT Company, Phone FROM Supplier

WHERE state NOT IN (‘CA’, ‘AZ’, ‘NM’);

Selection of values as regards a specified string of characters:

SELECT Article, Journal FROM Publications WHERE Abstract LIKE ‘intern%’;

SELECT * form Customers WHERE Phone NOT LIKE ‘503%’;

Selection of values with the criterion imposed on a calculated field:

SELECTK Book.Author, Book.Title, Year(Date())-Book.Edit_year AS Book_age

FROM Book WHERE Year(Date())-Book.Edit_year > 10;

the same

Homework: think out a database table for the illustration of above

examples.

ORDER BYclause

The clause is used to display result records in an ascending (ASC) or a descending (DESC)

order. Ascending is the default order. There can be more than one field in the order list.

ASC: 1,2,3,…., 100 DESC: 'zero', 'z', 'x', … , 'bogdan', 'beata', 'alabama', 'ala'

Examples

Records are sorted first by date of sale, than for each date, the records are ordered by

invoice number. A default order type is ascending.

SELECT * FROM Sales ORDER BY Sale_date, Invoice_no;

SELECT * FROM Sales ORDER BY Sale_date ASC, Invoice_no ASC;

Records are sorted first by date of sale discerningly, than for each date, the records are

ordered by invoice number (in an ascending way). A default order type is ascending.

SELECT * FROM Sales ORDER BY Sale_date DESC, Invoice_no;

the same

Homework: think out a database table for the illustration of above

examples.

Aggregation
The aggregation operation can be used to all rows in a table expression, to the rows

specified by a WHERE clause, or to groups of rows set up by the GROUP BY clause.

The aggregation functions (SQL aggregates):

SUM(expression) The total sum of values in the numeric expression

AVG(expression) The average of values in the numeric expression

COUNT(expression) The number of non-null values in the expression

COUNT(*) The number of selected rows.

MAX(expression) The highest (greatest) value in the expression

MIN(expression) The lowest (smallest) value in the expression

The argument - expression is

often a field name, but it can

also be a constant, a function

call, or any combination of

field names, constants, and

function calls - all connected

by appropriate operators.

Article Price PriceCut PriceAfterCut

AAA 100 0.1 90

BBB 50 0.1 45

CCC 150 0.2 120

200 0.2 160

EEE 80 0.1 72

FFF 75 0.1 67.5

Count(Article) → 5

Count(Price) → 6

Sum(Price) → 655

Min(PriceCut) →0.1

Max(PriceAfterCut) →160

Aggregation

Example aggregation

SELECT Count(Book.ID) AS Books,

Avg(Book.Price) AS AvgPrice,

Min(Book.Price) AS MinimumPrice,

Max(Book.Price) AS MaksimumPrice,

Min(Year(Date())-Book.Edit_year) AS

AgeYoungest,

Max(Year(Date())-Book.Edit_year) AS

AgeOldest,

FROM Book;

Before aggregation

After aggregation

Assumed current
year: 2020

GROUP BY clause
The clause is intimately connected to aggregates. The clause divides a set of records into

subsets, while aggregate functions produce summary values for each subset. There can be

more than one GROUP BY clause in a query.

Example

SELECT Book.Type, Count(Book.ID) AS Books,

Avg(Book.Price) AS AvgPrice,

Min(Book.Price) AS MinimumPrice,

Max(Book.Price) AS MaksimumPrice,

Min(Year(Date())-Book.Edit_year) AS AgeYoungest,

Max(Year(Date())-Book.Edit_year) AS AgeOldest,

FROM Book

GROUP BY Book.Type;

WHERE clause in aggregation queries
WHERE clause used in an aggregation query (either with or without grouping) enables to

retrieve records that satisfy the criterion in the WHERE condition first, then the aggregation is

done.

Examples

SELECT Count(Book.ID) AS Books, Avg(Book.Price) AS AvgPrice,

Min(Book.Price) AS MinimumPrice, Max(Book.Price) AS MaksimumPrice,

Min(Year(Date())-Book.Edit_year) AS AgeYoungest,

Max(Year(Date())-Book.Edit_year) AS AgeOldest,

FROM Book WHERE Book.Type<>"Handbook“;

SELECT Book.Type, Count(Book.ID) AS Books, Avg(Book.Price) AS AvgPrice,

Min(Book.Price) AS MinimumPrice, Max(Book.Price) AS MaksimumPrice,

Min(Year(Date())-Book.Edit_year) AS AgeYoungest,

Max(Year(Date())-Book.Edit_year) AS AgeOldest,

FROM Book WHERE Book.Type<>"Handbook"

GROUP BY Book.Type;

HAVING clause in queries

The HAVING clause is a criterion used for an aggregate function applied to groups, i.e. for

each group an aggregate is calculated, and then a criterion on the aggregate result is imposed.

Then the records for which the criterion is satisfied are selected.

Example

SELECT Book.Type, Count(Book.ID) AS Books,

Avg(Book.Price) AS AvgPrice,

Min(Book.Price) AS MinimumPrice,

Max(Book.Price) AS MaksimumPrice,

Min(Year(Date())-Book.Edit)_year AS AgeYoungest,

Max(Year(Date())-Book.Edit)_year AS AgeOldest,

FROM Book

GROUP BY Book.Type;

HAVING Avg(Book.Price) > 60;

Nested query
It is possible to create a nested query, i.e. to place one query inside another. The inner query

is called a subquery and it is evaluated first. Then the outer query can use the results of the

subquery to find its results.

The subquery (is usually a part of the WHERE clause) and can be applied in various ways.

Examples

SELECT Customer_number, Last_N, First_N, Town FROM Customer

WHERE Credit_limit IN (SELECT DIST Credit_limit FROM Customer WHERE

Town = ‘Kielce’) and Town <> ‘Kielce’;

SELECT Customer_number, Last_N, First_N, Town FROM Customer

WHERE Credit_limit = (SELECT Max(Credit_limit) FROM Customer);

SELECT Author, Title, Price FROM Book

WHERE Price > (SELECT AVG(Price) from Book);

Homework: think out a database table for the illustration of above

examples.

