Database solutions

Selected SQL commands — part 1

Marzena Nowakowska
Faculty of Management and Computer Modelling

Kielce University of Technology
room: 3.21 C

SQL syntax

A syntax is like template which tells what is required (permitted) for a given
command.

Conventions used for the SQL syntax:

« SQL keywords are in uppercase letters, although in practice they can
be in any case,

« words or phrases which should be supplied are in lowercase letters —
they are placeholders for values (constants, expressions, identifiers —
names of databases, tables, or other database objects),

« curly brackets { } around a list of words or phrases separated by
vertical bars means that one of these options must be taken to the
command,

 square brackets [] indicate optional occurrence of words or phrases.

Each SQL command ends with a semicolon (;).

Fundamental 1deas

DML — Data Manipulation Language

Data manipulation is retrieving and modifying data through SQL commands:
« SELECT

 INSERT

« DELETE

« UPDATE

DDL — Data Definition Language

Data definition operates on data structure:
« CREATE

« DROP

« ALTER

DCL — Data Control Language

Data controlling is used to control access to data stored in a database:
« GRANT

« REVOKE

« DENY

SELECT command

SELECT [modifier]

{ * | table.* | [table.]field1l [AS aliasl] [, [table.]field2 [AS alias2] [, ...]]}
FROM table expression |, ...]

'WHERE condition]

GROUP BY field_list]

'HAVING group_condition]

ORDER BY sort_fieldl [ASC | DESC |[, sort_field2 [ASC | DESC ||,
||k

The command retrieves data from a table or from multiple tables.

SELECT command description

modifier = {ALL | DISTINCT} (ALL is a default value)
specification what to do with duplicates in the resulting records

table name of a table from which records are retrieved:; * defines all fields
from a given table; ALL is a default value
field either a table field name or a calculated field the value of which is to be

presented; calculated fields are expressions created with the use of field
names, constants, operators, and functions

alias an alternative name for a field
table expression

name of a table, a named query, or a result of a join operation (INNER
JOIN, LEFT JOIN, RIGHT JOIN)

condition criterion imposed on retrieved records
field list list of fields separated by comas, by which records are grouped
group_condition

criterion imposed on a group (used with GROUP BY clause)

sort_field either a table field or a calculated field according to which records are
sorted

SELECT command — modifier

SELECT Book.Title, Author
FROM Book:

SELECT ALL Book.Title, Author

FROM Book:

Result: 25 records

e

—the same

Title = Author
Bazy damych Jasinski Pawet
Bazy damych Jasinski Pawet
Bazy damych Jasinski Pawet
Bazy danych Jasinski Pawet
Big Data Manilla John

Encyklopedia of computer scier Ralston Anthony
English business letters
Financial MANAGEMENT Schall Diana
Finite MATHEMATICS Thompson Norman
Jak wygrac na polskiej giefdzie Werner Jack

Kaufmann Walter

Longman lexicon of contem. En Mc Arthur Thomas
Meta-analysis of accident data Elvik Rune
MswWorks 3.0i 3.0 PL Widuch Tadeusz
Fodatek VAT i akcyzowy WozZniak Karol
Praca z arkuszem kalkulacyjnyr Praca zbiorwoa
Frogramowanie w systemie UN Rochkind Mark
Quality assessment

Road safety analysis

Safety preformace function

Elvek Rune

Abdel-Aty Mohamed
Abdel-Aty Mohamed
Stownik Angielsko-Polski Stanistawski Jan
Turbo pascal Marciniak Andrzej
Wartosc pienigdza w czasie Wieczorek Daniel
Wartosc pienigdza w czasie
Wartosc pienigdza w czasie

Wartosc pienigdza w czasie

Wieczorek Daniel
Wieczorek Daniel
Wieczorek Daniel

SELECT command — modifier

SELECT DISTINCT Book.Title,

Author

FROM Book;
Result: 19 records. Tere are more
than one volume of the same title
and the same author but only one
IS shown

Title - Author
Bazy danych Jasinski Pawet
Big Data Manilla lohn
Encyklopedia of computer s¢ Ralston Anthony
English business letters Kaufmann Walter
Financial MANAGEMENT Schall Diana
Finite MATHEMATICS Thompson Morman

Jak wygrac na polskiej gietdz Werner lack
Longman lexicon of contem. Mc Arthur Thomas
Meta-analysis of accident da Elvik Rune

MsWorks 3.0 3.0 PL Widuch Tadeusz
Podatek VAT i akcyzowy Woziniak Karol

Praca z arkuszem kalkulacyjr Praca zbiorwoa
Programowanie w systemie Rochkind Mark
Quality assessment Elvek Rune

Road safety analysis Abdel-Aty Mohamed
Safety preformace function Abdel-Aty Mohamed
Stownik Angielsko-Polski Stanistawski Jan
Turbo pascal Marciniak Andrzej
Wartosc pienigdza w czasie Wieczorek Daniel

SELECT command - table_expression

The term table_expression defines a recordset that is selected form the dabatase:

e asingle table

« multiple tables (sometimes that have very little in common); JOINs are relational
operators that combine data from multiple table into a single result table. The
source tables are joined in the sense that the resulting table includes information

taken from all the source tables.

Consider the following tables

' Location | |—j| m— ey
Location 102 AL T Dept_ID v Location_ID - | Dept_name - | mproyee N
1 Boston 21 1 Sales Emp ID -~ | Dept ID - [Empl_name -
3 Miami 24 1 Admin 61 24 Kirk
5 Chicago 27 5 Repair 63 27 McCoy

29 5 Stock

Basic JOIN

SELECT Department.*, Employee.* FROM Department, Employee;

Depar‘tment.Dept-_lD ~ | Location_ID - | Dept name - Emp ID - | Employee.Dept ID - |[Empl _name -

21 1/ Sales 61 24 Kirk
21 1 Sales 63 27 McCoy
24 1 Admin 61 24 Kirk
24 1 Admin 63 27 McCoy
27 5 Repair 61 24 Kirk
27 > Repair 63 27 McCoy
29 5 Stock 61 24 Kirk
29 5 Stock 63 27 McCoy

The result table is the Cartesian product of the Employee and the Department
tables; it combines every row of Employee with every row of Department.

Not only it contains considerable redundancy but also 1t doesn’t make much sense.
Those rows in which the department identifier from the Department table is equal

to department identifier from the Employee table indicate a correct combination of
Information.

Equi-join
This is a basic join with a WHERE clause containing a condition specifying that the

value in one column in the first table must be equal to the value of a corresponding
column in the second table.

SELECT Department.*, Employee.*
FROM Department, Employee
WHERE Department.Dept_ID = Employee.Dept_ID;

The version with aliases (attention: depending on a DBMS the table aliases can be
defined in a different way) is as follows:

SELECTD.* E.*
FROM Department AS D, Employee AS E
WHERE D.Dept_ID = E.Dept_ID;

Department.Dept_ID - Location_ID - Dept name - | Emp_ID - Employee.Dept ID - Empl_name -
24 1 Admin 61 24 Kirk
27 > Repair B3 27 McCoy

INNER JOIN

The inner join is a special case of an equi-join. A column from one source table is
compared with a column of a second source table for equality. The two columns
must be the same type.

An 1nner join discards all rows form the result table that don’t have corresponding
rows in both source tables. The common fields (responsible for the join) can have
different names.

SELECT Department_a.*, Employee.*
FROM Department_a INNER JOIN Employee ON Department_a.ID =
Employee.Dept_ID;

ID =~ Location ID - Dept name -~ Emp ID - Dept ID ~ Empl name -
24 1 Admin 61 24 Kirk
27 > Repair 63 27 McCoy

Outer JOIN

When an inner join is performed on tables, all unmatched rows are excluded from
the output. Outer joins, however, do not exclude the unmatched rows.

In a query that includes the JOIN operator, the left table is the one that precedes the
keyword JOIN and the right table is the one that follows the keyword JOIN.

The left table may have rows that don’t have matching counterparts in the right
table. Conversely, the table on the right may have rows that don’t have matching
counterparts in the left table,

Consider the following tables

| 1 Department | | T Advagenoy ~| Dep-Advert .
b Agency ID - Agency name - h
Dept ID - Location ID - |Dept name - S B e gency_ Agency ID -| Dept ID -~
21 1 sales 1 Fergusson 1 21
2 Frost-BT
24 1 Admin 3 Toryon 4 24
27 5 Repair 4 Gyrosign 2 29

29 5 Stock 5 Digit Design

LEFT (outer) JOIN

The left join preserves unmatched rows from the left table but discards unmatched
rows from the right table.

SELECT Department.Dept_ID, Department.Dept_name, [Dep-

Advert].Dept_ID, AdvAgency.Agency_name, AdvAgency.Agency ID
FROM

(Department LEFT JOIN [Dep-Advert]

ON Department.Dept_ID = [Dep-Advert].Dept_ID)
LEFT JOIN AdvAgency

ON [Dep-Advert].Agency_ID = AdvAgency.Agency_ID;

Department.Dept ID -~ Dept name - Dep-Advert.Dept ID - Agency name - Agency ID -
21 Sales 21 Fergusson 1
24 Admin 24 Gyrosign 4
27 Repair
29 Stock 29 Frost-BT 2

All departments are included, even if no advertisement was ordered by them.
For those (non-advert) departments respective fields have null values.

RIGHT (outer) JOIN

The right join preserves unmatched rows from the right table but discards
unmatched rows from the left table.

SELECT Department.Dept_ID, Department.Dept_name,

[Dep-Advert].Agency_ID, AdvAgency.Agency name, AdvAgency.Agency ID
FROM

(Department RIGHT JOIN [Dep-Advert]

ON Department.Dept_ID = [Dep-Advert].Dept_ID)
RIGHT JOIN AdvAgency

ON [Dep-Advert].Agency_ID = AdvAgency.Agency_ID;

Dept ID -~ Dept name - -Dep-.ﬂ.dvert..ﬂ.genc‘,r_l[l * Agency name -~ AdvAgency.Agency ID -
21 Sales 1 Fergusson

1

29 Stock 2 Frost-BT 2
Toryon 3

24 Admin 4 Gyrosign 4
Digit Design 5

All advert agencies are included, even if some of them were not ordered

advertisements form the departments. For those (non-ordered) agencies respective
fields have null values.

WHERE clause

The clause defines criterion (condition) which have to be satisfied by records. The

criterion is a logical expression that can consists of expression of different types,

such as text, date, and numerical expression. The following operators can be used

to create an expression:

e comparison operators: =, >, >=, <, <=, <> (not equal to symbol may depend on
a DBMS)

» logical operators: AND (conjunction), OR (alternative), NOT (negation),

 arithmetical operators: + (addition), - (subtraction), * (multiplication), / , \
(division) : 5/2 -> 2.5 whereas 5\2 -> 2

« BETWEEN operator enables to define a range of values in the condition

* IN operator enables to define a list of values specified in the condition

* IS NULL operator enables to indicate null values

» LIKE operator enables to define a patterns of characters; the operator is used
with wildcards: * (or %) represents any collection of characters, _(or ?)
represents any single character

WHERE clause examples

Selection of values within a specified range:
SELECT * FROM Foods WHERE Calories >99 AND Calories<301;
SELECT * FROM Foods WHERE Calories >=100 AND Calories <:300;} the same
SELECT * FROM Foods WHERE Calories BETWEEN 100 AND 300;
Provided that Calories are integer numbers
Selection of values within a specified list:
SELECT Title, Author, Editor FROM Book WHERE Price IN (100, 50, 150);
SELECT Company, Phone FROM Supplier
WHERE state NOT IN (‘CA, ‘AZ’, ‘NM’);

Selection of values as regards a specified string of characters:
SELECT Article, Journal FROM Publications WHERE Abstract LIKE ‘intern%’;
SELECT * form Customers WHERE Phone NOT LIKE ‘503%’;

Selection of values with the criterion imposed on a calculated field:
SELECTK Book.Author, Book.Title, Year(Date())-Book.Edit_year AS Book age
FROM Book WHERE Year(Date())-Book.Edit_year > 10;

Homework: think out a database table for the illustration of above
examples.

ORDER BYclause

The clause is used to display result records in an ascending (ASC) or a descending (DESC)
order. Ascending is the default order. There can be more than one field in the order list.
ASC:1,2,3,....,100 DESC: 'zero', 'z, 'x, ..., 'bogdan’, 'beata’, 'alabama’, ‘ala’
Examples
Records are sorted first by date of sale, than for each date, the records are ordered by
invoice number. A default order type is ascending.
SELECT * FROM Sales ORDER BY Sale date, Invoice no;
SELECT * FROM Sales ORDER BY Sale_date ASC, Invoice no ASC: } the same

Records are sorted first by date of sale discerningly, than for each date, the records are
ordered by invoice number (in an ascending way). A default order type is ascending.
SELECT * FROM Sales ORDER BY Sale date DESC, Invoice_no;

Homework: think out a database table for the illustration of above
examples.

Aggregation

The aggregation operation can be used to all rows in a table expression, to the rows
specified by a WHERE clause, or to groups of rows set up by the GROUP BY clause.
The aggregation functions (SQL aggregates):

SUM(expression)

The total sum of values in the numeric expression

AVG(expression)

The average of values in the numeric expression

COUNT (expression)

The number of non-null values in the expression

COUNT(*)

The number of selected rows.

MAX((expression)

The highest (greatest) value in the expression

MIN(expression)

The lowest (smallest) value in the expression

The argument - expression is
often a field name, but it can
also be a constant, a function
call, or any combination of
field names, constants, and
function calls - all connected
by appropriate operators.

25
26
- 655
-0.1

Article | Price | PriceCut | PriceAfterCut
AAA 100 0.1 90
BBB 50 0.1 45 Count(Article)
ccc | 150 0.2 120 ——> Count(Price)
200 0.2 160 Sum(Price)
EEE |80 0.1 72 Min(PriceCut)
FFE | 75 0.1 67.5 Max(PriceAfterCut) —>160

0001
0003
0004
0005
0006
0007
0011
0013
0015
0016
0017
0019
0022
0031
0032
0099
0100
0102
0105
0106
0107
0108
0109
0110
0111

Assumed current

Aggregation

Title -~ Price -~
Wartosc pienigdza w czasie 14.00 zt
Programowanie w systemie Uk 7.00 zt
Financial MANAGEMENT 114.60 zt
Turbo pascal 22.50 zt
Finite MATHEMATICS 16.32
Bazy danych 99.50 zt
Wartosc pienigdza w czasie 14.00 zt
Stownik Angielsko-Polski 48.00 =t
Bazy danych 99.50 zt
Wartosc pienigdza w czasie 14.00 zt
Jak wygrac na polskiej gietdzie 7.80 zt
Podatek VAT i akcyzowy 7.30 =zt
Encyklopedia of computer sciel 160.70 zi

Longman lexicon of contem. En 144.00 zt

Wartosc pienigdza w czasie 89.90 zt
English business letters 10.56 zt
Praca z arkuszem kalkulacyjnyn 130.00 zi
MsWorks 3.0 3.0 PL 14.10 =zt
Bazy danych 99.50 zt
Bazy danych 99.50 zt
Big Data 55.00 zt
Road safety analysis 33.00 zt
Safety preformace function 50.00 zt
Meta-analysis of accident data 100.00 zt
Quality assessment 60.00 zt

year: 2020

Edit year -
1983
1993
1974
1993
1983
1997
1933
1985
1932
1993
1933
1993
1933
1988
1934
1986
1933
1994
1937
2012
2014
2015
2015
2014
2013

<——— Before aggregation

Example aggregation

SELECT Count(Book.ID) AS Books,
Avg(Book.Price) AS AvgPrice,
Min(Book.Price) AS MinimumPrice,
Max(Book.Price) AS MaksimumPrice,
Min(Year(Date())-Book.Edit_year) AS
AgeYoungest,
Max(Year(Date())-Book.Edit_year) AS
AgeOldest,

FROM Book;

After aggregation

Books - AvgPric » MinimumPric - MaksimumPrice - AgeYounges » AgeOldest -
25 60.43zt

7.00 zi 160.70 zt 3 46

GROUP BY clause

The clause is intimately connected to aggregates. The clause divides a set of records into

subsets, while aggregate functions produce summary values for each subset. There can be
more than one GROUP BY clause in a query.

Example
SELECT Book.Type, Count(Book.ID) AS Books,
Avg(Book.Price) AS AvgPrice,
Min(Book.Price) AS MinimumPrice,
Max(Book.Price) AS MaksimumPrice,
Min(Year(Date())-Book.Edit_year) AS AgeYoungest,

Max(Year(Date())-Book.Edit_year) AS AgeOldest,
FROM Book

GROUP BY Book.Type;

Type -~ Books - AvgPrice -~ MinimumPrice - MaksimumPrice - AgeYounges - AgeOldest -
Handbook 16 55.16 zt 7.00 zt 130.00 zt 3 46
Lexicon 3 89.57 zt 48.00 zt 160.70 zt 7 35

User guide o 59.93 zt 7.30 zt 144.00 zt] 34

WHERE clause In aggregation queries

WHERE clause used in an aggregation query (either with or without grouping) enables to

retrieve records that satisfy the criterion in the WHERE condition first, then the aggregation is
done.

Examples

SELECT Count(Book.ID) AS Books, Avg(Book.Price) AS AvgPrice,
Min(Book.Price) AS MinimumPrice, Max(Book.Price) AS MaksimumPrice,
Min(Year(Date())-Book.Edit_year) AS AgeYoungest,
Max(Year(Date())-Book.Edit_year) AS AgeOldest,

FROM Book WHERE Book.Type<>"Handbook";

Books - AwvgPrice - MinimumPrice - MaksimumPrice - AgeYoungest - AgeOldest -
9 69.81 zt 7.30 zt 160.70 zt 6 35

SELECT Book.Type, Count(Book.ID) AS Books, Avg(Book.Price) AS AvgPrice,
Min(Book.Price) AS MinimumPrice, Max(Book.Price) AS MaksimumPrice,
Min(Year(Date())-Book.Edit_year) AS AgeYoungest,
Max(Year(Date())-Book.Edit_year) AS AgeOldest,

FROM Book WHERE Book.Type<>"Handbook"

GROUP BY Book.Type;

Type ~ Books - AwvgPrice ~ MinimumPrice -~ MaksimumPrice - AgeYoungest - AgeOldest -
Lexicon 3 89.57 zt 48.00 zt 160.70 zt 7 35
User guide 3] 59.93 zt 7.30 zt 144.00 zi 6 34

HAVING clause In queries

The HAVING clause is a criterion used for an aggregate function applied to groups, i.e. for
each group an aggregate is calculated, and then a criterion on the aggregate result is imposed.
Then the records for which the criterion is satisfied are selected.

Example
SELECT Book.Type, Count(Book.ID) AS Books,
Avg(Book.Price) AS AvgPrice,
Min(Book.Price) AS MinimumPrice,
Max(Book.Price) AS MaksimumPrice,
Min(Year(Date())-Book.Edit) year AS AgeYoungest,
Max(Year(Date())-Book.Edit) year AS AgeOldest,
FROM Book
GROUP BY Book.Type;
HAVING Avg(Book.Price) > 60;

Type - Books - AvgPrice - MinimumPrice - MaksimumPrice - AgeYoungest - AgeOldest -
Lexicon 3 89.57 zt 48.00 zt 160.70 zt 7 35

Nested query

It is possible to create a nested query, i.e. to place one query inside another. The inner query
iIs called a subquery and it is evaluated first. Then the outer query can use the results of the

subquery to find its results.
The subquery (is usually a part of the WHERE clause) and can be applied in various ways.

Examples
SELECT Customer_number, Last_N, First_N, Town FROM Customer
WHERE Credit_limit IN (SELECT DIST Credit_limit FROM Customer WHERE
Town = ‘Kielce’) and Town <> “Kielce’;

SELECT Customer_number, Last_N, First_ N, Town FROM Customer
WHERE Credit_limit = (SELECT Max(Credit_limit) FROM Customer);

SELECT Author, Title, Price FROM Book
WHERE Price > (SELECT AVG(Price) from Book);

Homework: think out a database table for the illustration of above
examples.

