
# **Database solutions**

## Chosen aspects of the relational model

Marzena Nowakowska Faculty of Management and Computer Modelling Kielce University of Technology room: 3.21 C

#### **Database design methodology**

**Database desing methodology** is a structural approach in which procedures, techniques, tools, and documentation aids are used to support and facilitate the process of the development of a database project.



#### **Database design**

**Conceptual database design** is a global view of the database as seen by high-level managers and decision makers. It is independent of all physical considerations, including a database model.

**Logical database design** refers to a complete view of a logical data representation. This level describes <u>what</u> data are stored in the database:

- all entities, their attributes, and relationships,
- the constraints on the data,
- semantic information about the data,
- security and integrity information.

**Physical database design** refers to a complete definition of physical data representation. This level describes <u>how</u> data are stored in a database.

#### **Concept of a key**

- **Superkey**. An attribute or a set of attributes that uniquely identifies each entity occurrence.
- **Candidate key**. A superkey that contains only the minimum number of attributes necessary for the unique identification.
- Simple key. A key that consists of one attribute.
- **Composite key**. A key that consists of more than one attribute.
- **Primary key**. A candidate key that is selected to identify each entity occurrence / to identify records uniquely within the table.
- Alternate key. The candidate key that are not selected to be a primary key.
- Foreign key. An attribute or a set of attributes within one table that matches the primary key in a related table.

#### **Concept of a key - illustration**

| Company_employees |           |         |             |            |         |        |  |  |
|-------------------|-----------|---------|-------------|------------|---------|--------|--|--|
| Id                | Surname   | Forname | Pesel       | Emp_date   | Salary  | Id_dep |  |  |
| 1                 | Nowak     | Anna    | 54051401458 |            | •       | 1      |  |  |
| 2                 | Kowalski  | Jan     | 61120913334 | 2012-01-15 | 5000,00 | 2      |  |  |
| 3                 | Ferency   | Andrzej | 65021502376 | 2013-11-20 | 4500,00 | 1      |  |  |
| 4                 | Podsiadło | Karol   | 70013003355 | 2015-04-25 | 3890,00 | 2      |  |  |

Foreign key

Primary key

|    | Company_departments |        |          |              |  |  |  |  |
|----|---------------------|--------|----------|--------------|--|--|--|--|
| Id | Town                | Code   | Street   | Office_tel   |  |  |  |  |
| 1  | Kielce              | 25-314 | Złota 33 | 41 34 24 567 |  |  |  |  |
| 2  | Busko-Zdrój         | 28-100 | Polna 15 | 41 378 27 55 |  |  |  |  |

#### **Database relational integrity**

Database integrity refers to the correctness and consistency of stored data.

The relational integrity rules:

- entity integrity,
- referential integrity,
- domain constraints,
- business rules.

**Null** represents an absence of a value. It can appear in any cell of any column in a table. Null value is used when there is no value for a field in a record or the value is unknown or missing.

### **Integrity rules**

**Entity integrity** is the rule according to which no attribute that is a part of a primary key may accept null value. The rule guarantees that one record can be distinguish from another, which means that all values of the primary key within a table are unique.

**Referential integrity** is the rule according to which if a foreign key exists in a table, either the foreign key value must match the value of the primary key for some row of the home table or must be null.

**Domain constraints** is the form of restrictions on the set of values allowed for the columns of tables (semantic integrity).

**Business rules** cover all remaining (additional) constraints that the database must satisfy.

#### Anomalies in a table design

Anomalies in a table design are abnormalities (irregulaties, inadequacies, deficiencies) that cause problems in the database management. The problems are connected mainly with data redundancy.

**Data redundancy** is a multiple appearance of the same data in a table or the appearance of duplicated data stored in more than one table. Tables that have redundant data suffer from **update anomalies**, which are classified into the categories:

- insertion anomalies,
- deletion anomalies,
- modification anomalies.

#### **Categories of anomalies**

**Insertion anomaly** is a design irregularity when a new record is inserted into a table and at least one of the following actions are undertaken:

- some values already existing in the table are to be duplicated, thus causing potential data inconsistency,
- nulls are to be entered for some attributes in certain rows, which can violate the entity integrity if one of the attribute defines the primary key.

**Deletion anomaly** is a design irregularity that occurs when the deletion of a record from a table causes that some important details are lost unintentionally (unwillingly).

**Modification anomaly** is a design irregularity that occurs when the change of an attribute value for a record requires changing relative values in other records – if the change is not done, the database will become inconsistent.

#### **Illustration of anomalies**

| Education_projects |                      |                       |             |            |                                              |             |  |  |  |
|--------------------|----------------------|-----------------------|-------------|------------|----------------------------------------------|-------------|--|--|--|
| Id                 | Name                 | Coordinator           | Office_tel  | Id_part    | Participant                                  | Contact     |  |  |  |
| P1                 | Baroque              | MSc. Anna<br>Jamrożuy | 697 675 876 | <b>U</b> 1 | Grammar School No 11,<br>Kielce, Jasna St. 5 | 123 987 567 |  |  |  |
| <b>P</b> 1         | Baroque              | MSc. Anna<br>Jamrożuy | 697 675 876 | <b>U</b> 2 | National Museum of<br>Kielce, Rynek St.1     | 654 678 444 |  |  |  |
| <b>P</b> 2         | Old Kielce           | MSc. Jan<br>Kołek     | 611 209 133 | <b>U</b> 3 | PPTA, Kielce<br>Department, Młoda St. 5      | 967 111 345 |  |  |  |
| <b>P</b> 3         | Facing the<br>Nature | Dr. Andrzej<br>Wojton | 650 215 023 | U1         | Grammar School No 11,<br>Kielce, Jasna St. 5 | 123 987 567 |  |  |  |
| <b>P</b> 3         | Facing the<br>Nature | Dr. Andrzej<br>Wojton | 650 215 023 | <b>U</b> 3 | PPTA, Kielce<br>Department, Młoda St. 5      | 967 111 345 |  |  |  |
| <b>P</b> 3         | Facing the<br>Nature | Dr. Andrzej<br>Wojton | 650 215 023 | <b>U</b> 4 | Forest HighSchool,<br>Zagnańsk, Wonna St. 6  | 666 888 333 |  |  |  |

Insertion anomaly:participant of a new project (duplication), new<br/>prepared project (null value in an attribute key),Deletion anomaly:deletion the U3 participant  $\Rightarrow$  deletion the P2<br/>project

Modification anomaly: changing the phone number of the P3 project office (possible inconsistency).