
wxMaxima for Calculus II

Zachary Hannan
Solano Community College



This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International License. To view a copy of this license, visit http://creativecommons.

org/licenses/by-nc-sa/4.0/.

The CC-BY-NC-SA license allows anyone to modify and/or redistribute this material as
long as the original author and all subsequent authors are attributed. This work and its
derivatives must not be used for commercial purposes except by permission of the original
author (the copyright holder), and all derivative works must use the identical license. If you
wish to create a derivative work, the .tex files are available here: https://wxmaximafor.

wordpress.com/. I would appreciate it if you contact me at zhannan@solano.edu if you
decide to create a derivative work.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://wxmaximafor.wordpress.com/
https://wxmaximafor.wordpress.com/


Contents

Preface vi

0 Introduction to wxMaxima 1
0.1 Basic Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

0.1.1 Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
0.1.2 Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.1.3 Trigonometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

0.2 Expressions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
0.3 2D and 3D Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
0.4 Defining and Solving Equations . . . . . . . . . . . . . . . . . . . . . . . . . 10
0.5 Sequences and Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

0.5.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
0.5.2 Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

0.6 Application: Line Passing Through Two Given Points . . . . . . . . . . . . 17
0.7 Module 0 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1 Classical Integration Techniques 20
1.1 Quick Integration Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.1.1 Definite Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.1.2 Area Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.1.3 The Fundamental Theorem of Calculus . . . . . . . . . . . . . . . . 24

1.2 Transforming Integrals With Substitutions . . . . . . . . . . . . . . . . . . . 25
1.2.1 u-Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2.2 Trigonometric Substitution . . . . . . . . . . . . . . . . . . . . . . . 27

1.3 More Integration Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.3.1 Integration by Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.3.2 Partial Fractions Decomposition . . . . . . . . . . . . . . . . . . . . 31

1.4 Improper Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.5 Module 1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2 Numerical Integration Techniques 42
2.1 Midpoint Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2 Trapezoid Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.1 For a Function Defined Analytically . . . . . . . . . . . . . . . . . . 46
2.2.2 For a Discrete Data Set . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 Simpson’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3.1 For a Function Defined Analytically . . . . . . . . . . . . . . . . . . 50
2.3.2 *For a Discrete Data Set . . . . . . . . . . . . . . . . . . . . . . . . . 53

iii



2.4 wxMaxima’s Built-In Quadrature Methods . . . . . . . . . . . . . . . . . . 56
2.5 A Monte Carlo Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.6 Module 2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3 Geometric Applications of Integration 61
3.1 Area Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1.1 Area and Physical Integration . . . . . . . . . . . . . . . . . . . . . . 62
3.1.2 Area Bounded Between Two Functions . . . . . . . . . . . . . . . . . 64

3.2 Solids of Revolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.1 Disks and Washers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.2 Cylindrical Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3 Arc Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.1 As a Limiting Process . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.2 As a Physical Integral . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4 Surface Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.5 Module 3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Ordinary Differential Equations 89
4.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2 Separable Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3 wxMaxima’s Built-In ODE Solver . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4 Direction Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.5 Euler’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.6 Module 4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 Parametric and Polar Curves 110
5.1 Parametric Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2 Calculus Applications for Parametric Curves . . . . . . . . . . . . . . . . . 115

5.2.1 Slope of a Parametric Curve . . . . . . . . . . . . . . . . . . . . . . . 115
5.2.2 Arc Length of a Parametric Curve . . . . . . . . . . . . . . . . . . . 118

5.3 Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3.1 Polar Coordinates and Coordinate Transformations . . . . . . . . . . 120
5.3.2 Plotting Curves in Polar Coordinates . . . . . . . . . . . . . . . . . . 123

5.4 Calculus Applications for Polar Curves . . . . . . . . . . . . . . . . . . . . . 127
5.4.1 Slope in Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . 127
5.4.2 Arc Length of a Polar Curve . . . . . . . . . . . . . . . . . . . . . . 128
5.4.3 Area in Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5 Module 5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6 Infinite Sequences and Infinite Series 136
6.1 Infinite Sequences and Their Limits . . . . . . . . . . . . . . . . . . . . . . . 137
6.2 Infinite Series and Their Sums . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.3 Classical Convergence Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.3.1 The Integral Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.3.2 Comparison Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.3.3 Alternating Series and Absolute Convergence . . . . . . . . . . . . . 147
6.3.4 The Ratio and Root Tests . . . . . . . . . . . . . . . . . . . . . . . . 149

6.4 Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.4.1 Convergence and Radius of Convergence . . . . . . . . . . . . . . . . 150
6.4.2 Taylor Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

iv



6.5 *Fourier Sine Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.6 Module 6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

v



Preface

Computer Algebra Systems:

A computer algebra system is a collection of software designed primarily for symbolic
manipulation. A CAS can do just about any symbolic calculation one might do “by hand”,
but the CAS is much faster, more accurate and capable of handling greater complexity.
Complex calculations can be broken into manageable pieces by using function assignments,
and systems can be explored by quickly changing their parameters. In addition to symbolic
manipulation, a CAS can produce quality graphics, make numerical approximations of
various types and run simple programs to solve problems that cannot be solved symbolically.

wxMaxima:

wxMaxima is a user interface for the computer algebra system Maxima. The interface al-
lows the user to build, edit and save a document (a .wxm file) containing many calculations
and graphics, and most operations can be accessed through the GUI if desired. Maxima
and wxMaxima are open-source projects, which means they will always be free and they
are always improving thanks to the pro bono work of their many enthusiasts.

The latest version of wxMaxima for Windows and Mac machines can be obtained here:
http://andrejv.github.io/wxmaxima/. When you click the download link for your op-
erating system, you will be taken to a sourceforge.net page that will automatically download
Maxima, wxMaxima, GNUplot and any other necessary auxilliary programs required for
wxMaxima to run on your machine. Installation on a Windows machine typically takes
about 5 minutes.

Software Versions

This text is written using wxMaxima version 12.04.0 and Maxima version 5.27.0. If you
run newer versions of the software it is unlikely to cause any problems. Bugs do occur
rarely, however, so I recommend that the instructor and students all use the same version
in case troubleshooting becomes necessary.

vi
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“wxMaxima for” Series

I have released two books in the “wxMaxima for” series:

“wxMaxima for Calculus I” June 2015
“wxMaxima for Calculus II” June 2015

with plans to publish similar texts for Linear Algebra, Differential Equations and Multi-
variable Calculus over the next several years.

Texts can be obtained at https://wxmaximafor.wordpress.com/. The texts are available
as free .pdf downloads or an affordable “print-on-demand” option.

The texts primarily target lower division students who are concurrently taking the standard
sequence of mathematics courses for engineering, physical science and applied mathematics
majors. Universities increasingly expect such students to be competent with mathematical
software when they begin their upper division courses, and many institutions currently run
math labs to address this need. Each text in the “wxMaxima for” sequence can serve as a
lab manual for a one semester, 1-unit lab course, or a valuable “by example” resource for
students learning computer algebra independently.

Assuming only basic experience with computers (comfort with an operating system such as
Windows or Mac OS), each text gradually introduces computer algebra by using examples
relevant to the concurrent math course. The main theoretical points of each course are
reviewed concisely, and commands are introduced as they are needed. Examples motivate
and reinforce the important mathematical concepts and illustrate their applications in the
context of computer algebra. Written commands are used exclusively for two reasons:
first, they are more powerful and flexible, and secondly, getting comfortable with written
commands ensures that the computing learned here will translate easily to other software
packages.

Text Layout

Each text is divided into 7 modules, each consisting of several sections and subsections.
Each subsection typically starts with a short theoretical discussion followed by several Ex-
amples worked in wxMaxima. Each module ends with a short set of Exercises progressing
from routine to advanced. Exceptionally challenging sections and Exercises are marked
with an asterisk.

This text is not intended to be an encyclopedic reference manual, but each module contains
a list of “Key Commands” on the title page to make it easier to search for an example that
uses a particular command.

vii
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To the student

For students with very little computer experience, the first couple modules will move very
slowly. Making mistakes and debugging your commands is a natural part of learning the
syntax of a new program. Although wxMaxima will attempt to help you with errors, the
most valuable resource you have is internet research. If you Google a particular problem,
you will find a variety of forums on the web where you will likely find a similar problem
addressed. With time, your wxMaxima vocabulary and your ability to search efficiently will
grow. Note that it is wise to include “wxMaxima” in your queries rather than “Maxima”,
as the latter term has many meanings other than the computer algebra system!

The official Maxima manual can be found at http://maxima.sourceforge.net/docs/

manual/maxima.html, though you should be warned that it is written for an audience with
a high degree of computing knowledge. I occasionally use the official manual, but I have
found that searching for relevant examples is the fastest way to learn.

It is important to work through the Examples yourself, whether or not they are assigned
by your instructor. When you type out the commands for yourself, you will undoubtedly
make syntax errors that have to be debugged. Fixing your syntax in a worked example is
excellent preparation for doing the Exercises on your own.

To the Instructor

There are varying levels at which this material can be incorporated in your course. You
may decide to have the students simply reproduce and submit all Examples from the text,
or you may decide to only assign selected Exercises and let the students use the text for
reference on their own. The material can be casual or very demanding depending on how
much you include in your course.

I recommend that students submit their work by e-mail in a well-formatted wxMaxima
worksheet (.wxm) file with a clear header and Examples and/or Exercises clearly labeled.
Students can insert text lines in their worksheet by selecting Cell > Insert Text Cell or
hitting Ctrl+1. When you open the worksheet, the commands will have to be re-executed,
and this is a quick way to verify that all the code works and the desired solutions are
obtained. Students have the responsibility to debug their work until it runs without error.

Any feedback on this text is greatly appreciated and will be taken into consideration for
future editions.

Thank you,

Zak Hannan
Instructor of Mathematics and Physics
Solano Community College, Fairfield, CA
zhannan@solano.edu
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0.1 Basic Operations

0.1.1 Arithmetic

wxMaxima uses +,-,*,/,^,sqrt,log for add, subtract, multiply, divide, exponentiate,
square root and natural log. We use % to call a prior result and float to find a decimal
approximation. To show the results of each calculation, we end the input line with ; and
hit shift+enter. If we wish to hide the output of a calculation, we end the line with $

instead of ;.

Example 0.1.1. Perform the following arithmetic operations:

1. Compute 3 · 2 + 5.
2. Add

√
2 to the previous output.

3. Find a decimal approximation for the previous output.
4. Square the previous output.

(%i1) 3*2+5;

(%o1) 11

(%i2) %+sqrt(2);

(%o2) sqrt(2)+11

(%i3) float(%);

(%o3) 12.4142135623731

(%i4) %^2;

(%o4) 154.1126983722081

You will find that your output is occasionally “prettier” than the output shown in this
text; for example, sqrt(2)+11 should display as

√
2 + 11. We use the “pretty” format

only when necessary for clarity.

Example 0.1.2. Add 5
6 and 7

15 and find the reduced form of the result, then express
your answer as a decimal approximation.

(%i5) (5/6)+(7/15);

(%o5) 13/10

(%i6) float(%);

(%o6) 1.3

Note that wxMaxima automatically puts the exact fraction form in lowest terms for us.

Example 0.1.3. wxMaxima uses the symbol %e for the ubiquitous constant e. Find a
decimal approximation for e and verify that ln e = 1.

(%i7) float(%e);

(%o7) 2.718281828459045

(%i8) log(%e);

(%o8) 1
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0.1.2 Algebra

wxMaxima can handle basic algebraic operations on variable expressions as well as
numbers: combining like terms, expanding and factoring, adding/substracting/reducing
rational expressions, etc. In some cases a complete simplification is automatic, and in
other cases we have to coax a simplification using ratsimp or fullratsimp (the latter
command simply applies ratsimp repeatedly). Note that an input like 5x results in an
error – we have to explicitly note the multiplication by writing 5*x.

Example 0.1.4. Perform the following operations:

1. Simplify: (3a+ b) + 2(2a− b)

We enter the expression and apply ratsimp to combine like terms:

(%i9) (3*a+b)+2*(2*a-b);

(%o9) b+2*(2*a-b)+3*a

(%i10) ratsimp(%);

(%o10) 7*a-b

2. Expand: (a+ b)3

expand cubes the binomial:

(%i11) (a+b)^3;

(%o11) (b+a)^3

(%i12) expand(%);

(%o12) b^3+3*a*b^2+3*a^2*b+a^3

3. Factor: x2 − 8x+ 12

We simply apply factor:

(%i13) factor(x^2-8*x+12);

(%o13) (x-6)*(x-2)

4. Add and express in factored form: 5
x2−1 + x−2

x2+2x−3

We add using ratsimp, then put the answer in factored form using factor:

(%i14) 5/(x^2-1)+(x-2)/(x^2+2*x-3);

(%o14) (x-2)/(x^2+2*x-3)+5/(x^2-1)

(%i15) ratsimp(%);

(%o15) (x^2+4*x+13)/(x^3+3*x^2-x-3)

(%i16) factor(%);

(%o16) (x^2+4*x+13)/((x-1)*(x+1)*(x+3))

5. Reduce:
2x2+xy

y
xy+x

y2

We enter the complex fraction, reduce using ratsimp and factor using factor:
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(%i17) ((2*x^2+x*y)/y)/((x*y+x)/y^2);

(%o17) (y*(x*y+2*x^2))/(x*y+x)

(%i18) ratsimp(%);

(%o18) (y^2+2*x*y)/(y+1)

(%i19) factor(%);

(%o19) (y*(y+2*x))/(y+1)

0.1.3 Trigonometry

wxMaxima knows about all the trigonometric functions. We input angles in radians, so
any angle measured in degrees must be converted to radians using a factor of 2π

360 . %pi is
the special symbol for π.

Example 0.1.5. Compute sin 85◦ and tan 11π
12 .

(%i20) 85*2*%pi/360;

(%o20) (17*%pi)/36

(%i21) sin(%);

(%o21) sin((17*%pi)/36)

(%i22) float(%);

(%o22) 0.99619469809175

(%i23) float(tan(11*%pi/12));

(%o23) -0.26794919243112

We use trigsimp to apply pythagorean identities, trigreduce to reduce powers of trig
functions and trigexpand to expand functions of “multiple angles”.

Example 0.1.6. A survey of trigonometric manipulations.

1. Apply trigreduce to sin2 x+ cos2 x. What happens? Try using trigsimp instead.

(%i24) trigreduce((sin(x))^2+(cos(x))^2);

(%o24) (cos(2*x)+1)/2+(1-cos(2*x))/2

trigreduce resulted in a more complicated expression – we apply trigsimp instead:

(%i25) trigsimp((cos(x))^2+(sin(x))^2);

(%o25) 1

2. Express sin2 x in terms of a “double angle”.
This time trigreduce is the desired command:

(%i26) trigreduce((sin(x))^2);

(%o26) (1-cos(2*x))/2

3. Obtain a formula for cos (x+ y) in terms of sinx and cosx.
trigexpand will simplify the argument of the cosine:

(%i27) trigexpand(cos(x+y));

(%o27) cos(x)*cos(y)-sin(x)*sin(y)

4



0.2 Expressions and Functions

One of the powerful features of a computer algebra system is that we can label a variety
of objects then “call” them later using that label. We can assign a label to an expression
using “:” and we can assign a label to a function using “:=”. Expressions can be
evaluated for specific values of the variable(s) using subst or sublis, while functions are
evaluated using ordinary function notation. Expressions and functions have a variety of
pros and cons that will emerge as we proceed – often we can choose either one to solve a
problem.

Example 0.2.1. Assign A to the expression 2x+ 5 and B to the expression 6− x4, then
compute A+B, A−B and AB in expanded form.

We assign A and B on two consecutive lines before executing with shift+enter.

(%i1) A:2*x+5$

B:6-x^4$

(%i3) A+B;

(%o3) -x^4+2*x+11

(%i4) A-B;

(%o4) x^4+2*x-1

(%i5) A*B;

(%o5) (2*x+5)*(6-x^4)

(%i6) expand(%);

(%o6) -2*x^5-5*x^4+12*x+30

Example 0.2.2. Use subst to evaluate A when x = −3 and when x = B.

(%i7) subst(-3,x,A);

(%o7) -1

(%i8) subst(B,x,A);

(%o8) 2*(6-x^4)+5

Example 0.2.3. Assign f(x) to the square root function. Evaluate f(4), f(−4) and
f(A).

(%i9) f(x):=sqrt(x);

(%o9) f(x):=sqrt(x)

(%i10) f(4);

(%o10) 2

(%i11) f(-4);

(%o11) 2*%i

5



(%i12) f(A);

(%o12) sqrt(2*x+5)

We see that
√
−4 evaluates to 2i. Note that the special symbol for the imaginary unit i is

%i. wxMaxima is not restricted to only real solutions!

Example 0.2.4. Use sublis to evaluate −b+
√
b2−4ac
2a when a = 1, b = −3 and c = 5.

(%i9) EXPN:(-b+sqrt(b^2-4*a*c))/(2*a)$

(%i10) sublis([a=1,b=-3,c=5],EXPN);

(%o10) (sqrt(11)*%i+3)/2

Functions can have an arbitrary number of variables. Sometimes we use a variable as a
parameter to create a family of related functions:

Example 0.2.5. Define fn(x) = cos (nπx), then list fn(x) for several values of n.

(%i13) f(n,x):=cos(n*%pi*x)$

f(1,x);

f(2,x);

f(3,x);

(%o14) cos(%pi*x)

(%o15) cos(2*%pi*x)

(%o16) cos(3*%pi*x)

6



0.3 2D and 3D Plots

wxMaxima creates plots by calling another program called GNUplot. In this text, we
exclusively use the commands wxdraw2d and wxdraw3d to create embedded 2D and 3D
plots. The related commands draw2d and draw3d will create the same plot in a GNUplot
pop-up window. The pop-up window is useful for manipulating 3D plots (we can move
the picture around with a mouse), but the embedded plots are more useful for printing
our work. If you are using an older version of wxMaxima, it may be necessary to enter
load(draw)$ before using the wxdraw2d and wxdraw3d commands.

Plots can be ammended with a host of attributes introduced gradually throughout the
text. We include a small sample of graphic objects and plot features below.

Example 0.3.1. Define f(x) = x2, then make a simple plot of f(x) on [−3, 3].

We begin this section by applying kill(all) to delete all the assignments wxMaxima is
currently remembering. In practice, we only need to use kill(all) if our previous
assignments are causing some kind of interference with a calculation. We use explicit to
plot the function because f(x) is stated explicitly as a function of x, then the domain is
listed alongside the function. We place several line breaks inside wxdraw2d to aid our
organization:

(%i1) kill(all)$

(%i1) f(x):=x^2$

(%i2) wxdraw2d(

explicit(f(x),x,-3,3)

);

Example 0.3.2. Plot the points [−3, 1] and [2, 5] on a grid for x-range [−10, 10] and
y-range [−10, 10]. Include a label above each point.

We use point_type=7 to make closed circles and points to list the desired points. label
is used to create the text of each label and attach it to the desired coordinates (in this
case, 1 unit above the actual points):

(%i3) wxdraw2d(

grid=true,
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xrange=[-10,10],

yrange=[-10,10],

point_type=7,

points([[-3,1],[2,5]]),

label(["[-3,1]",-3,2],["[2,5]",2,6])

);

Example 0.3.3. Plot a black vertical line x = 3, and plot the unit circle in red with
x-range [−4, 4] and y-range [−4, 4]. Include the x and y axes, a grid and a title.

This example is a good illustration of how easily a plot can grow in complexity. A vertical
line is not a function, so it must be defined parametrically. We tell wxMaxima to plot
many points (3, t) as t runs from −4 to 4. In addition, the equation of the unit circle
defines a curve implicitly : we can’t solve for y in terms of x. Finally, the unit circle will
be distorted if we don’t force the aspect ratio to be square using dimensions:

(%i4) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

dimensions=[600,600],

xrange=[-4,4],

yrange=[-4,4],

title="The unit circle and the line x=3.",

color=black,

parametric(3,t,t,-4,4),

color=red,

implicit(x^2+y^2=1,x,-1,1,y,-1,1)

);
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Example 0.3.4. Make a quick plot of the paraboloid z = x2 + y2 using wxdraw3d. In
addition, use draw3d to draw the paraboloid in a GNUplot window, then manipulate the
plot with a mouse.

(%i5) wxdraw3d(

explicit(x^2+y^2,x,-5,5,y,-5,5)

);
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0.4 Defining and Solving Equations

In wxMaxima, the symbol “=” is reserved for defining equations. Once an equation is
defined, we can use rhs and lhs to isolate the right and left sides. Many equations and
systems of equations can be solved using solve, but some equations can only be solved
with numerical approximations using find_root or another approximation.

Example 0.4.1. Assign the symbol EQN to the equation 3x− 6 = 6x+ 5, then solve the
equation “manually” by performing the usual algebraic operations to isolate x. Check
your answer by substituting this value of x into the left and right sides of the original
equation. Finally, check your answer again by using solve.

We run through the standard process for linear equations:

(%i1) EQN:3*x-6=6*x+5;

(%o1) 3*x-6=6*x+5

(%i2) %+6;

(%o2) 3*x=6*x+11

(%i3) %-6*x;

(%o3) -3*x=11

(%i4) %/-3;

(%o4) x=-11/3

We check our answer using subst:

(%i5) subst(-11/3,x,rhs(EQN));

(%o5) -17

(%i6) subst(-11/3,x,lhs(EQN));

(%o6) -17

Finally, we repeat the solution using solve:

(%i7) solve(EQN,x);

(%o7) [x=-11/3]

Example 0.4.2. Attempt to solve lnx = sinx using solve. What happens? Now
rephrase the problem in terms of finding a root of another function. Approximate the
solution using find_root.

First we attempt the naive solution, calling the equation EQN2:

(%i8) EQN2:log(x)=sin(x)$

solve(EQN2,x);

(%o9) [sin(x)=log(x)]

wxMaxima simply repeats the question, indicating a failure to find the solution (in fact,
solve can only solve some polynomial equations!). However, we realize that any solution
to lnx = sinx is also a solution of lnx− sinx = 0, so we can examine the function
f(x) = lnx− sinx and numerically approximate its roots.
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One complication of find_root is that we have to specify the interval on which the root
occurs, and the function must be defined on the interval we choose. We can choose an
interval by quickly sketching the function:

(%i10) wxdraw2d(

grid=true,

explicit(log(x)-sin(x),x,0,10)

);

We see a root somewhere on [2, 4]. Note: if we choose the interval [0, 4], find_root fails
because lnx is not defined at x = 0!

(%i11) find_root(log(x)-sin(x),2,4);

(%o11) 2.219107148913746

We obtain x ≈ 2.219 as the numerical solution to the equation.

Example 0.4.3. Solve the system of equations

{
2x− 3y = 5

3x+ y = 2
using solve. Plot both

equations implicitly and mark the intersection point in the plot.

(%i12) L1:2*x-3*y=5$

L2:3*x+y=2$

solve([L1,L2],[x,y]);

(%o14) [[x=1,y=-1]]

(%i15) wxdraw2d(

grid=true,

color=black,

implicit(L1,x,-2,2,y,-2,2),

implicit(L2,x,-2,2,y,-2,2),

color=red,

point_type=7,

points([[1,-1]])

);
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0.5 Sequences and Sums

0.5.1 Sequences

Sequences find a wide variety of applications, and we use them frequently in this text.
wxMaxima generates sequences using makelist or for-do. makelist offers the
advantage that we can call list elements later in the calculation, while for-do is much
more flexible and powerful.

Example 0.5.1. Use makelist to generate the sequence L = 1, 3, 5, . . . 51. Use
wxMaxima to isolate the tenth element of the sequence.

We use the formula 2n− 1 with n = 1 . . . 26 to generate the sequence:

(%i1) L:makelist(2*n-1,n,1,26);

(%o1) [1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,

37,39,41,43,45,47,49,51]

Now we call the tenth element of L:

(%i2) L[10];

(%o2) 19

Example 0.5.2. Use makelist to generate a sequence of 20 ordered pairs on the line
y = 2x for x = 0.0, 0.1, . . . , 2. Feed your list of ordered pairs into wxdraw2d.

We can generate the x values using the sequence 0.1k for k = 0, 1, . . . , 20. The output of
makelist is already in “list” form, so it is ready to feed into wxdraw2d:

(%i3) POINTS:makelist([0.1*k,2*(0.1*k)],k,0,20);

(%o3) [[0,0],[0.1,0.2],[0.2,0.4],[0.3,0.6],[0.4,0.8],[0.5,1.0],

[0.6,1.2],[0.7,1.4],[0.8,1.6],[0.9,1.8],[1.0,2.0],[1.1,2.2],

[1.2,2.4],[1.3,2.6],[1.4,2.8],[1.5,3.0],[1.6,3.2],[1.7,3.4],

[1.8,3.6],[1.9,3.8],[2.0,4.0]]

(%i4) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[-1,3],

yrange=[-1,5],

point_type=7,

color=red,

points(POINTS)

);
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Example 0.5.3. Use a for-do loop to generate the same sequence as Example 0.5.1.

When we program a for-do loop (also called simply a “do-loop”), we ask wxMaxima to
repeat a process until some ending point is reached. In this case, we ask wxMaxima to
assign x to 2n− 1 and print x, repeating the calculation for n = 1 . . . 26:

(%i5) (for n:1 thru 26 do

(x: 2*n-1,

print(x))

);

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51
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(%o5) done

Example 0.5.4. The Fibonacci sequence is defined by a recursive formula
fn = fn−1 + fn−2; that is, the next number is obtained by adding the previous two
numbers. If we start the sequence with 0, 1, . . . , the entire sequence is given by
0, 1, 1, 2, 3, 5, 8, . . . . Use a do-loop to generate the first twenty terms of the Fibonacci
sequence.

Our use of for-do is more substantial in this example: we have to repeat a calculation
several times and use the output of each step to compute the next step. We define the
two starting numbers fn−1 and fn−2 first, then the loop prints the next Fibonacci

number X, changes the (n− 1)
th

term to the (n− 2)
th

term and assigns the (n− 1)
th

term to X. Then the process is repeated 18 times for a total of 20 Fibonacci numbers.

(%i6) N_1:1$

N_2:0$

(%i8)

(for i:1 thru 18 do

(X:N_2+N_1,

print(X),

N_2:N_1,

N_1:X)

);

1

2

3

5

8

13

21

34

55

89

144

233

377

610

987

1597

2584

4181

(%o8) done
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0.5.2 Sums

wxMaxima computes sums using sum. The notation is very close to sigma notation:

Example 0.5.5. Use sum to compute the sum 2 + 4 + 6 + · · ·+ 50.

In sigma notation, the sum is written
∑25
n=1 2n, and the arguments of sum simply refer to

all the parts of this notation:

(%i9) sum(2*n,n,1,25);

(%o9) 650

Example 0.5.6. Find an algebraic formula for the sum 1 + 2 + · · ·+ n, then use a
substitution to obtain the sum of the first 100 natural numbers.

In sigma notation, we wish to compute
∑n
k=1 k. The classic formula is obtained using sum

followed by simpsum, then we substitute n = 100:

(%i10) sum(k,k,1,n),simpsum;

(%o10) (n^2+n)/2

(%i11) subst(100,n,%);

(%o11) 5050
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0.6 Application: Line Passing Through Two Given
Points

As a demonstration of the utility of symbolic calculation, we design a function to quickly
plot the line connecting two points.

Example 0.6.1. Create a function LINE(a,b,c,d,x) that computes the equation of a
line passing through the points (a, b) and (c, d). Set up your code so the simple
assignment of a, b, c, d will immediately produce a nice plot of the line and the two given
points. Apply your code to the points (−0.51,−3.47) and (7.12, 3.94).

First, we define each point as a function of two variables. The output of each function is
in the correct form to use as a point within wxdraw2d. Then we compute the slope
between the points as a function of all four variables:

(%i1) POINT1(a,b):=[a,b]$

POINT2(c,d):=[c,d]$

SLOPE(a,b,c,d):=(d-b)/(c-a)$

The next step is to plug into the point-slope formula y − y0 = m(x− x0) and solve for y
as a function of x. We use POINT1 as (x0, y0).

(%i4) LINE(a,b,c,d,x):=SLOPE(a,b,c,d)*(x-a)+b$

Finally, we make the assignments for a, b, c, d and set up wxdraw2d. Note that everything
remains general within wxdraw2d, so we can plot the line between any two points
immediately by making new assignments for a, b, c, d:

(%i5) a:-.51$

b:-3.47$

c:7.12$

d:3.94$

wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

color=black,

explicit(LINE(a,b,c,d,x),x,a-1,c+1),

color=red,

point_type=7,

points([[a,b],[c,d]])

);
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0.7 Module 0 Exercises

1. Define the expressions A =
√

3 and B = 5, then find decimal approximations for
A+B and A/B.

2. Define expressions A = x2 and B = ex. Substitute B for x in the formula for A, then
evaluate the resulting expression at x = 0.1 and obtain a decimal approximation.

3. Use trigexpand to find a formula for sin (x+ y) in terms of sinx, sin y, cosx and
cos y. Use your result to compute sin 5π

12 by using the fact that 5π
12 = π

6 + π
4 .

Re-calculate sin 5π
12 directly and use float to verify your answer.

4. Add and simplify: 2x2−x−6
x2−9 + x3−x2−4x+4

x2+5x+6 . Express your answer in factored form.

5. Solve the equation ax2 + bx+ c = 0 for x.

6. Make a plot of f(x) = sin (lnx)− 0.2 on [10, 30] including the x-axis. Use
find_root to approximate the solution of sin (lnx) = 0.2 on this interval. Verify
your answer by evaluating sin (lnx) at the value of x you found.

7. Define f(x) = x+ 2 and g(x) = x2. Find the intersections of these two curves, then
make a plot of both functions including the intersection points as closed circles.
Label each intersection point using decimal coordinates rounded to the second
decimal place.

8. Use makelist and for-do to generate the first thirty terms of the sequence
1, 12 ,

1
4 , . . . .

9. The recursive formula for a sequence is given by fn = 2fn−1 with a starting point of
f0 = 3. Use a do-loop to generate the first 10 terms of this sequence recursively (as
in Example 0.5.4). Once the sequence is written down, you can guess an explicit
formula for fn. Once you find this formula, use makelist to generate the same
sequence.

10. Use makelist to plot 40 circles centered at the origin with radii 0.1, 0.2, 0.3, . . . in a
single plot. This problem is tricky because your list must produce elements that
wxdraw2d understands: implicit and its proper arguments must be included with
each list element!

11. Any parabola can be written f(x) = ax2 + bx+ c. The parameters a, b, c completely
define the parabola. If you are given three points lying on an unknown parabola,
they generate a system of three equations in a, b, c. solve can quickly produce the
solution of this system. The proper syntax is
solve([eqn1,eqn2,eqn3],[var1,var2,var3]). Write a solution similar to
Example 0.6.1 to take any three points and produce a plot of the points together
with the parabola passing through them. Apply your code to the points
(−6.8,−5.5), (0.1, 6.7) and (3.2,−0.9).
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1.1 Quick Integration Review

1.1.1 Definite Integrals

The notion of integration arises from The Area Problem: the problem of computing the
signed area bounded by a function f(x) on an interval [a, b]. The area problem is usually
introduced by splitting the interval [a, b] into many small sub-intervals and approximating
each “slice” of area with a rectangle. The resulting approximation is called a Riemann
Sum (in the next module we will explore numerical approximations in more detail). The
exact area bounded on [a, b] can be defined as a limit of a Riemann sum as the
rectanglular slices become arbitrarily narrow, and we say the area is given by the
definite integral:

A =

∫ b

a

f(x) dx

wxMaxima computes definite integrals using the integrate command.

Example 1.1.1. Compute

∫ 2

−1

1

1 + x2
dx and produce a plot of f(x) together with the

shaded area you have computed.

We define f(x) as a function, apply integrate, and use float to obtain a decimal
approximation:

(%i1) f(x):=1/(1+x^2)$

(%i2) integrate(f(x),x,-1,2);

(%o2) atan(2)+%pi/4

(%i3) float(%);

(%o3) 1.892546881191539

We see that

∫ 2

−1

1

1 + x2
dx = tan−1(2) +

π

4
≈ 1.89.

To produce the shaded plot, we have to use filled_func, which expects us to define the
area between two curves (we use y = 0 as the second curve). We set a variety of options
inside wxdraw2d to produce a nice plot:

(%i4) load(draw)$

(%i5) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[-5,5],

yrange=[-.2,1.2],

title="Area bounded by f(x) on [-1,2]",

color=black,

explicit(f(x),x,-5,5),

filled_func=true,

filled_func=f(x),

explicit(0,x,-1,2),

filled_func=false

);
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1.1.2 Area Functions

An area function is a definite integral with a variable limit of integration. For example,
to find the area bounded by f on [a, x], we write:

A(x) =

∫ x

a

f(t) dt

where t is introduced as a “dummy variable” since x is already used to denote the
endpoint of the integration interval.

Example 1.1.2. Define the area function A(x) =

∫ x

1

sinx dx. Plot the areas represented

by A(π2 ) and A(π). Use a difference of area functions to compute the area bounded by
f(x) = sinx on [π2 , π], and verify your answer using integrate directly.

First, we define A(x) in terms of the dummy variable, t:

(%i6) A(x):=integrate(sin(t),t,1,x);

(%o6) A(x) :=

∫ x

1

sin t dt

Now we can make the shaded plots. A(π2 ) =

∫ π
2

1

sin t dt, so we simply shade in the area

bounded by sin t on [1, π2 ]. Similarly, the shaded area for A(π) is just the bounded area on
[1, π]:

(%i7) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[0,4],

yrange=[-1.5,1.5],

title="Shaded area given by A(pi/2)",

color=black,

explicit(sin(x),x,0,4),
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filled_func=true,

filled_func=sin(x),

explicit(0,x,1,%pi/2),

filled_func=false

);

(%i8) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[0,4],

yrange=[-1.5,1.5],

title="Shaded area given by A(pi)",

color=black,

explicit(sin(x),x,0,4),

filled_func=true,

filled_func=sin(x),

explicit(0,x,1,%pi),

filled_func=false

);

It is clear from the graphs that the area bounded on [π2 , π] is just the difference in the two
areas A(π)−A(π2 ). It is also apparent that the “starting point” x = 1 makes no
difference in the calculation. Finally, we compute the area in two different ways:

(%i9) A(%pi)-A(%pi/2);

(%o9) 1

(%i10) integrate(sin(x),x,%pi/2,%pi);

(%o10) 1
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1.1.3 The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus (FTC) is motivated geometrically by the idea that
a “thin slice” of area bounded on [x, x+ h] may be computed in two different ways: as a
rectanglular approximation f(x) · h or as a difference of area functions A(x+ h)−A(x).
When we equate these two representations of area and take the limit h→ 0, we obtain:

f(x) · h = A(x+ h)−A(x) =⇒ f(x) = lim
h→0

A(x+ h)−A(x)

h
= A′(x)

In other words, the area function is the antiderivative of the curve that bounds the area.

The FTC tells us that we can compute the definite integral

∫ b

a

f(x) dx by guessing an

antiderivative of f(x) (an area function A(x)) and evaluating it across the endpoints of
the interval to obtain A(b)−A(a). We don’t have to worry about the arbitrary constant
in the antiderivative, since it cancels in the difference. Note that the indefinite integral∫
f(x) dx is a synonym for the antiderivative of f(x), and wxMaxima computes

antiderivatives by using integrate with no limits of integration.

Example 1.1.3. Use the FTC to compute the area

∫ π

π
2

sinx dx from Example 1.1.2.

We use integrate to quickly compute an antiderivative, F (x). Note that ’’(%) is
necessary to assign a function to a previous output.

(%i11) f(x):=sin(x)$

integrate(f(x),x);

(%o12) -cos(x)

(%i13) F(x):=’’(%);

(%o13) F(x):=-cos(x)

(%i14) F(%pi)-F(%pi/2);

(%o14) 1

We get the same answer we obtained by using a difference of area functions in Example
1.1.2.

Example 1.1.4. Compute

∫ 3

1

1

x2
dx by finding the antiderivative of 1

x2 and evaluating

it across the endpoints of the integration interval. Verify your answer by directly
computing the definite integral.

To illustrate a slightly different approach to the problem, we define the antiderivative as
an expression and use subst to evaluate it across the endpoints.

(%i15) A:integrate(1/x^2,x);

(%o15) -1/x

(%i16) subst(3,x,A)-subst(1,x,A);

(%o16) 2/3

(%i17) integrate(1/x^2,x,1,3);

(%o17) 2/3
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1.2 Transforming Integrals With Substitutions

1.2.1 u-Substitution

To make a u-substitution, we define a variable u in terms of x (and du in terms of dx), so
that ∫

f(x) dx =

∫
g(u) du

where it is understood that it is easier to guess the antiderivative G(u). Once G(u) is
determined, we use the definition of u to transform back to the antiderivative F (x).
u-substitution can also be applied to definite integrals, where we can either evaluate F (x)
across the original integration limits or transform the integration limits in terms of u.

While any substitution technique is really intended for “pencil-and-paper” integration,
the process can teach us a lot about symbolic manipulation within wxMaxima. To
perform a u-substitution, we:

1. Decide on a substitution and use diff to produce the differential du (called
del(u)) in wxMaxima), then express dx in terms of du using solve.

2. Extract the resulting equation using %[1] and replace del(x) with its expression in
terms of del(u) in the integrand.

3. Use subst to transform the entire integrand in terms of u, then perform the
integral, remembering that integrate expects only the coefficient of del(u).

4. Substitute the definition of u in terms of x into the resulting antiderivative.
Alternatively, in a definite integral we can choose to transform the limits of
integration in terms of u before evaluation.

Example 1.2.1. Use the substitution u = x2 to compute

∫
5x · sin (x2) dx. Verify your

answer using diff.

(%i1) INTEGRAND:(5*x)*sin(x^2)*del(x)$

(%i2) solve(diff(u)=diff(x^2),del(x));

(%o2) [del(x)=del(u)/(2*x)]

(%i3) %[1];

(%o3) del(x)=del(u)/(2*x)

(%i4) subst(rhs(%),del(x),INTEGRAND);

(%o4) (5*sin(x^2)*del(u))/2

(%i5) subst(u,x^2,%);

(%o5) (5*sin(u)*del(u))/2

The integral is now expressed entirely in terms of u as
5

2

∫
sinu du, which is easy enough

to guess. For the sake of completeness we use wxMaxima to compute the integral, then
we transform the result to a function of the original variable, x:
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(%i6) integrate(coeff(%,del(u)),u);

(%o6) -(5*cos(u))/2

(%i7) subst(x^2,u,%);

(%o7) -(5*cos(x^2))/2

We conclude that

∫
5x · sin (x2) dx = −5

2
cos (x2) + C. Checking our answer with diff:

(%i8) diff(%,x);

(%o8) 5*x*sin(x^2)

We see that the chain rule produces the necessary factor of x, and the constant is set up
to work out to 5.

Example 1.2.2. Compute

∫ 0

−1

x√
1− x

dx by making the substitution u = 1− x.

First, we find the indefinite integral in terms of u:

(%i9) kill(all)$

(%i1) INTEGRAND:(x/(sqrt(1-x)))*del(x)$

(%i2) solve(diff(u)=diff(1-x),del(x));

(%o2) [del(x)=-del(u)]

(%i3) %[1];

(%o3) del(x)=-del(u)

(%i4) subst(rhs(%),del(x),INTEGRAND);

(%o4) -(x*del(u))/sqrt(1-x)

(%i5) solve(u=1-x,x);

(%o5) [x=1-u]

(%i6) subst(rhs(%[1]),x,(%o13));

(%o6) -((1-u)*del(u))/sqrt(u)

The integrand − 1−u√
u

du is simple to integrate using the standard “power rule” for

antiderivatives; that is, the u substitution appropriately results in a “guessable”
antiderivative. For convenience, we use wxMaxima to find the antiderivative, then we
label it as G(u):

(%i7) integrate(coeff(%,del(u)),u);

(%o7) (2*u^(3/2)-6*sqrt(u))/3

(%i8) G(u):=’’(%);

(%o8) G(u):=(2*u^(3/2)-6*sqrt(u))/3

We finish the definite integral by transforming back to x and evaluating across the
original limits of integration.

(%i9) G(1-x);

(%o9) (2*(1-x)^(3/2)-6*sqrt(1-x))/3

(%i10) F(x):=’’(%);

(%o10) F(x):=(2*(1-x)^(3/2)-6*sqrt(1-x))/3

(%i11) F(0)-F(-1);

(%o11) 2^(3/2)/3-4/3
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Alternatively, we can transform the limits of integration in terms of u:

(%i12) u(x):=1-x$

u_lower:u(-1);

u_upper:u(0);

(%o13) 2

(%o14) 1

(%i15) G(u_upper)-G(u_lower);

(%o15) 2^(3/2)/3-4/3

1.2.2 Trigonometric Substitution

A trigonometric substitution is used when we recognize a troublesome expression in the
integrand that may simplify according to one of the pythagorean identities:
sin2 x+ cos2 x = 1 or tan2 x+ 1 = sec2 x.

Like u-substitutions, trigonometric substitutions are intended for pencil and paper
calculations, but performing a trigonometric substitution within wxMaxima is still
instructive.

Example 1.2.3. Compute

∫ 0.5

−0.5

1√
1− x2

dx by using a trigonometric substitution.

We choose the substitution x = sin t to take advantage of the fact that 1− sin2 t = cos2 t.
Note that the trigonometric substitution comes with an implicit domain: to uniquely
cover all possible values of sin t, we work in the domain [−π2 ,

π
2 ]. There is no loss of

generality in this domain restriction because the integrand is only defined for x values on
[−1, 1], and all these values are covered by sin t on [−π2 ,

π
2 ].

(%i16) kill(all)$

(%i1) INTEGRAND:(1/sqrt(1-x^2))*del(x);

(%o1) del(x)/sqrt(1-x^2)

(%i2) solve(diff(x)=diff(sin(t)),del(x));

(%o2) [del(x)=cos(t)*del(t)]

(%i3) subst(rhs(%[1]),del(x),INTEGRAND);

(%o3) (cos(t)*del(t))/sqrt(1-x^2)

(%i4) subst(sin(t),x,%);

(%o4) (cos(t)*del(t))/sqrt(1-sin(t)^2)

(%i5) trigsimp(%);

(%o5) (cos(t)*del(t))/abs(cos(t))

We have to intervene manually because wxMaxima cannot perform integrals containing
absolute values. With t restricted to [−π2 ,

π
2 ], cos t is always positive, so | cos t| = cos t.

The integrand simplifies to 1 · dt. The integral evaluates to G(t) = t, and we substitute
the expression for t in terms of x to obtain the antiderivative F (x):

(%i6) G:integrate(1,t);

(%o6) t
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(%i7) solve(x=sin(t),t);

solve: using arc-trig functions to get a solution.

Some solutions will be lost.

(%o7) [t=asin(x)]

(%i8) subst(rhs(%[1]),t,G);

(%o8) asin(x)

(%i9) F(x):=’’(%)$

We ignore the solve warning, because t lies on the standard domain [−π2 ,
π
2 ]. We finish

by evaluating F (x) across the integration limits:

(%i10) F(.5)-F(-.5);

(%o10) 1.047197551196598

We suppress a string of warnings using ratprint, and check our answer with integrate:

(%i11) ratprint:false$

(%i12) integrate(1/sqrt(1-x^2),x,-.5,.5);

(%o12) 1.047197551196598

Example 1.2.4. Compute

∫
1

x
√

3 + x2
dx by using a trigonometric substitution.

The square root contains an expression that is close to 1 + tan2 x, but we need the
substitution for x2 to produce a factor of 3 so it can be factored out of the square root.
We choose the substitution x =

√
3 tan t. Again, we are working with an implicit domain

of [−π2 ,
π
2 ] for t, this time corresponding to a domain of [−∞,∞] for x =

√
3 tan t.

(%i13) kill(all)$

(%i1) INTEGRAND:(1/(x*sqrt(3+x^2)))*del(x);

(%o1) del(x)/(x*sqrt(x^2+3))

(%i2) solve(diff(x)=diff(sqrt(3)*tan(t)),del(x));

(%o2) [del(x)=sqrt(3)*sec(t)^2*del(t)]

(%i3) subst(rhs(%[1]),del(x),INTEGRAND);

(%o3) (sqrt(3)*sec(t)^2*del(t))/(x*sqrt(x^2+3))

(%i4) subst(sqrt(3)*tan(t),x,%);

(%o4) (sec(t)^2*del(t))/(tan(t)*sqrt(3*tan(t)^2+3))

(%i5) trigsimp(%);

(%o5) (abs(cos(t))*del(t))/(sqrt(3)*cos(t)*sin(t))

Again, we must intervene manually to cancel the factor of cos t because wxMaxima
doesn’t recognize that cos t is always positive on the implicit domain.

(%i6) G:integrate(1/(sqrt(3)*sin(t)),t);

(%o6) (log(cos(t)-1)/2-log(cos(t)+1)/2)/sqrt(3)

Finally, we substitute t into the last expression to get the antiderivative in terms of x.
Note that the solve warning can be ignored once again because we are implicitly working
on the standard restricted domain of the tangent function:
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(%i7) solve(x=sqrt(3)*tan(t),t);

solve: using arc-trig functions to get a solution.

Some solutions will be lost.

(%o7) [t=atan(x/sqrt(3))]

(%i8) subst(rhs(%[1]),t,G);

(%o8) (log(1/sqrt(x^2/3+1)-1)/2-log(1/sqrt(x^2/3+1)+1)/2)/sqrt(3)

(%i9) logcontract(%);

(%o9)
log
(
−
√
x2+3−

√
3√

x2+3+
√
3

)
2 ·
√

3

This answer agrees with the standard integration tables within a minus sign in the
argument of log (wxMaxima generally ignores the absolute values in this sort of
antiderivative).
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1.3 More Integration Techniques

1.3.1 Integration by Parts

Integration by parts is a “pencil and paper” method used to integrate a product of two
functions. A short-hand derivation of the formula is given below, starting with the
product rule for derivatives:

(uv)′ = u′v + uv′

=⇒ uv′ = (uv)′ − u′v

=⇒ u · dv = (uv)′ · dx− v · du

=⇒
∫
u dv = uv −

∫
v du

The definite integral version is discussed in the Exercises. When we solve an integral
using integration by parts, we have to choose the function u and the differential dv so
that du is simpler than u, and v is relatively easy to compute from dv.

Example 1.3.1. Compute

∫
x · sinx dx using integration by parts. Check your answer

using diff.

We choose u = x (du is clearly dx) and dv = sinx · dx, then find v in wxMaxima by

computing

∫
dv:

(%i1) u:x;

v:integrate(sin(x),x);

(%o1) x

(%o2) -cos(x)

(%i3) u*v-integrate(v,x);

(%o3) sin(x)-x*cos(x)

Finally, we check our answer using diff:

(%i4) diff(%,x);

(%o4) x*sin(x)

Example 1.3.2. Compute

∫
x2 · sinx dx using two iterations of integration by parts.

Check your answer using diff.

We choose u1 = x2 and dv1 = sinx · dx:

(%i5) u1:x^2$

diff(u1);

v1:integrate(sin(x),x);

(%o6) 2*x*del(x)
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(%o7) -cos(x)

(%i8) TERM1:u1*v1;

INTEGRAND1:v1*diff(u1);

(%o8) -x^2*cos(x)

(%o9) -2*x*cos(x)*del(x)

The first parts iteration is complete, yielding −x2 · cosx−
∫
−2x · cosx dx. Now we

choose u2 = −2x and dv2 = cosx · dx to perform the second integration by parts:

(%i10) u2:-2*x$

diff(u2);

v2:integrate(cos(x),x);

(%o11) -2*del(x)

(%o12) sin(x)

(%i13) TERM2:u2*v2;

INTEGRAND2:v2*diff(u2);

(%o13) -2*x*sin(x)

(%o14) -2*sin(x)*del(x)

The second parts integration yields −2x · sinx−
∫
−2 sinx dx. Finally, we put together

the final result: u1 · v1 −
(
u2 · v2 −

∫
v2 du2

)
and check using diff:

(%i15) TERM1-(TERM2-integrate(coeff(INTEGRAND2,del(x)),x));

(%o15) 2*x*sin(x)-x^2*cos(x)+2*cos(x)

(%i16) diff(%,x);

(%o16) x^2*sin(x)

1.3.2 Partial Fractions Decomposition

Partial fractions decomposition is used to break a rational integrand into smaller pieces,
each of which has a simple antiderivative. Assuming the degree of P (x) is less than the

degree of Q(x) in the rational expression P (x)
Q(x) , we can factor the denominator into linear

and irreducible quadratic factors, say Q(x) = D1(x) ·D2(x) · · ·Dn(x), then express P (x)
Q(x)

as a sum of simpler fractions, each with a Di (or possibly a power of Di) for its
denominator. If the degree of P (x) is greater than or equal to the degree of Q(x), then we
simply start the decomposition by performing polynomial long division.

There are a variety of cases to consider in order to express the decomposition with
sufficient generality. We assign unknown numerators Ni to each of the fractions in the
decomposition according to the following rules:

1. Each linear denominator must have a constant numerator, and each irreducible
quadratic denominator must have a linear numerator.
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2. If a repeated factor Dn
i appears in the factorization of Q(x), then the decomposition

must contain fractions with denominators Di, D
2
i , . . . , D

n
i each containing

numerators according to 1.

Once the decomposition is proposed, we can solve for the Ni’s algebraically by
constructing a system of equations. The resulting rational expressions Ni

Di
can all be

integrated quickly, requiring at most a u-substitution.

Example 1.3.3. Compute the partial fractions decomposition of x−4
3x3+5x2+4x+2 by

performing the algebra step-by-step.

We start by factoring the denominator and proposing the partial fractions decomposition
as an equation:

(%i17) kill(all)$

(%i1) R:(x-4)/(3*x^3+5*x^2+4*x+2)$

factor(denom(R));

(%o2) (x+1)*(3*x^2+2*x+2)

(%i3) EQN:R=(A/(x+1))+(B*x+C)/(3*x^2+2*x+2);

(%o3) (x-4)/(3*x^3+5*x^2+4*x+2)=(C+x*B)/(3*x^2+2*x+2)+A/(x+1)

Now we multiply both sides of the equation by the original denominator, expand the
result to a polynomial and produce a list of equations by comparing the coefficients of
each power of x on the left and right sides:

(%i4) EQN*(denom(R));

(%o4) x-4=(3*x^3+5*x^2+4*x+2)*((C+x*B)/(3*x^2+2*x+2)+A/(x+1))

(%i5) ratsimp(%);

(%o5) x-4=(x+1)*C+(x^2+x)*B+(3*x^2+2*x+2)*A

(%i6) expand(%);

(%o6) x-4=x*C+C+x^2*B+x*B+3*x^2*A+2*x*A+2*A

(%i7) EQN1:coeff(lhs(%o6),x,2)=coeff(rhs(%o6),x,2);

EQN2:coeff(lhs(%o6),x,1)=coeff(rhs(%o6),x,1);

EQN3:coeff(lhs(%o6),x,0)=coeff(rhs(%o6),x,0);

(%o7) 0=B+3*A

(%o8) 1=C+B+2*A

(%o9) -4=C+2*A

We solve this system of equations for A, B and C and substitute into the original
decomposition:

(%i10) solve([EQN1,EQN2,EQN3],[A,B,C]);

(%o10) [[A=-5/3,B=5,C=-2/3]]

(%i11) sublis([A=-5/3,B=5,C=-2/3],rhs(EQN));

(%o11)
5x− 2

3

3x2+2x+2 −
5

3(x+1)

The partial fractions decomposition is complete, leaving us with two terms that are
relatively easy to integrate. The integration of this expression is left as an Exercise.

Checking our answer:
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(%i12) ratsimp(%);

(%o12) x−4
3x3+5x2+4x+2

In the next example, we use wxMaxima to automatically compute a partial fraction
decomposition using partfrac, but the resulting integrals are computed “manually” in
more detail.

Example 1.3.4. Compute

∫
x4

2x3 − 2x2 + 3x− 3
dx using a partial fractions

decomposition.

We notice that the integrand is improper, so we should start by using polynomial long
division. partfrac actually does this automatically, but we divide first to illustrate.
divide produces a list containing a polynomial, then a remainder. To express the proper
form of the result, the remainder must appear over the original denominator:

(%i13) kill(all)$

(%i1) P:x^4$

Q:2*x^3-2*x^2+3*x-3$

(%i3) divide(P,Q);

(%o3) [(x+1)/2,-(x^2-3)/2]

(%i4) PROPER:%[1]+%[2]/Q;

(%o4) (x+1)/2-(x^2-3)/(2*(2*x^3-2*x^2+3*x-3))

Now we apply partfrac to get the decomposition:

(%i5) partfrac(PROPER,x);

(%o5) -(9*x+9)/(10*(2*x^2+3))+(x+1)/2+1/(5*(x-1))

We split this into 4 different terms that must be integrated:

1. − 9
10

∫
x

2x2 + 3
dx

2. − 9
10

∫
1

2x2 + 3
dx

3. 1
2

∫
(x+ 1) dx

4. 1
5

∫
1

(x− 1)
dx

In the first integral, we perform an informal substitution, realizing that a factor of 4

supplied to the numerator will produce the form

∫
du

u
= ln |u|:

− 9
10

∫
x

2x2 + 3
dx = − 9

10
· 1

4

∫
4x

2x2 + 3
dx = − 9

40
· ln |2x2 + 3|
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The second integral requires more care: we need to make a substitution to obtain the

form

∫
du

u2 + 1
= tan−1 x. We start by dividing a factor of 3 out of the denominator to

force the constant term to be 1, then we guess and check the u that gives us u2 + 1:

(%i6) P:1$

Q:2*x^2+3$

expand(Q/3);

(%o8) (2*x^2)/3+1

(%i9) u:sqrt(2/3)*x$

u^2;

(%o10) (2*x^2)/3

Next, we transform the integral:

(%i11) kill(all)$

(%i1) INTEGRAND:-(9/10)*1/(2*x^2+3)*del(x)$

(%i2) solve(diff(u)=diff(sqrt(2/3)*x),del(x));

(%o2) [del(x)=(sqrt(3)*del(u))/sqrt(2)]

(%i3) subst(rhs(%[1]),del(x),INTEGRAND)$

subst((3/2)*u^2,x^2,%);

(%o4) -(3^(5/2)*del(u))/(5*2^(3/2)*(3*u^2+3))

(%i5) factor(denom(%));

(%o5) 15*2^(3/2)*(u^2+1)

(%i6) INTEGRAND_u:(-3^(5/2))/%;

(%o6) − 3
3
2

5 2
3
2 (u2+1)

We can integrate by inspection, calling the result G(u). Finally, we substitute the
definition of x back into the result:

(%i7) G:coeff(%,1/(u^2+1))*atan(u);

(%o7) -(3^(3/2)*atan(u))/(5*2^(3/2))

(%i8) subst(sqrt(2/3)*x,u,%);

(%o8) −
3

3
2 atan

(√
2 x√
3

)
5 2

3
2

The last two integrals can be performed entirely by inspection:

1
2

∫
(x+ 1) dx =

1

4
x2 +

1

2
x and 1

5

∫
1

(x− 1)
dx =

1

5
ln |x− 1|

Finally, we put it all together:

∫
x4

2x3 − 2x2 + 3x− 3
dx = − 9

40
· ln |2x2 + 3| −

3
3
2 atan

(√
2 x√
3

)
5 2

3
2

+
1

4
x2 +

1

2
x+

1

5
ln |x− 1|

Checking with wxMaxima’s integrate:

(%i9) integrate(x^4/(2*x^3-2*x^2+3*x-3),x);
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(%o9) − 9 log(2 x2+3)
40 −

9 atan
(

2 x√
6

)
10
√
6

+ log(x−1)
5 + x2+2 x

4

wxMaxima agrees with our answer except for some rationalizing in the inverse tangent
term. Also note that the absolute value bars are not included in the log functions.
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1.4 Improper Integrals

Improper integrals are definite integrals with a limit at ±∞ or a discontinuity in the
integrand. Formally, improper integrals are computed as limits. For example:

If an upper limit is infinte:

∫ ∞
a

f(x) dx = lim
t→∞

∫ t

a

f(x) dx

If f(x) is discontinuous at b:

∫ b

a

f(x) dx = lim
t→b−

∫ t

a

f(x) dx

These formulas extend naturally to lower limits.

In practice, we can often get away with simply computing the indefinite integral and
evaluating the result at the limits of integration. However, we must still take care to split
any integration interval at a discontinuity of f(x).

Example 1.4.1. Compute

∫ ∞
1

1

x2
dx.

First we try the formal approach by taking the limit of an area function

∫ t

1

1

x2
dx:

(%i1) f(x):=1/x^2$

limit(integrate(f(x),x,1,t),t,inf);

Is "t-1" positive, negative, or zero? positive

(%o2) 1

wxMaxima asks for clarification on t to determine the direction of integration.

Repeating the calculation less formally:

(%i3) integrate(f(x),x)$

F(x):=’’%;

(%o4) F(x):=-1/x

(%i5) F(inf)-F(1);

(%o5) 1− 1
∞

Clearly, 1
∞ = 0, and the answer is 1.

It is interesting to make a shaded plot for this integral: an area spread infinitely wide can
still be finite!

(%i6) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[-.5,10],

yrange=[-.5,2],
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color=black,

explicit(f(x),x,-.5,10),

filled_func=true,

filled_func=f(x),

explicit(0,x,1,10),

filled_func=false

);

Example 1.4.2. Compute

∫ 1

0

1√
x

dx.

In this case, the integrand becomes infinite at the left limit of integration. Formally, we

are required to compute lim
t→0+

∫ 1

t

1√
x

dx:

(%i7) f(x):=1/sqrt(x)$

limit(integrate(f(x),x,t,1),t,0);

"Is "t-1" positive, negative, or zero?"negative;

"Is "t" positive, negative, or zero?"positive;

(%o8) 2

Repeating the calculation less formally:

(%i9) integrate(f(x),x)$

F(x):=’’(%);

(%o10) F(x):=2*sqrt(x)

(%i11) F(1)-F(0);

(%o11) 2

Again, it is interesting to make a plot. This time we have a shaded area that is infinitely
high, yet finite. We encounter an error when shading at a vertical asymptote, so the
shading is set to start at x = .001 instead of 0.

(%i12) wxdraw2d(

grid=true,

xaxis=true,
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yaxis=true,

xrange=[-.5,1.5],

yrange=[-.5,10],

color=black,

explicit(f(x),x,-.5,1.5),

filled_func=true,

filled_func=f(x),

explicit(0,x,.001,1),

filled_func=false

);

Example 1.4.3. Compute

∫ 4

1

1

(x− 3)2
dx.

This time, the integration interval contains a discontinuity. To compute the integral
formally, we have to break the it into two parts at the discontinuity, then phrase each

piece as a limit:

∫ 4

1

1

(x− 3)2
dx = lim

t→3−

∫ t

1

1

(x− 3)2
dx+ lim

t→3+

∫ 4

t

1

(x− 3)2
dx

wxMaxima flags the area functions as divergent before we can compute the limits:

(%i13) f(x):=1/(x-3)^2$

(%i14) integrate(f(x),x,1,t);

"Is "t-1" positive, negative, or zero?"positive;

"Is "t-2" positive, negative, or zero?"positive;

defint: integral is divergent.

-- an error. To debug this try: debugmode(true);

This answer is unsatisfying, so we approach the problem by computing the antiderivative
of f(x):

(%i15) A:integrate(f(x),x);

(%o15) -1/(x-3)
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Now we compute the first integral using a limit on a difference of antiderviatives
lim
x→3−

[A(x)−A(1)]:

(%i16) limit(A,x,3,minus)-subst(1,x,A);

(%o16) infinity-1/2

We see that lim
t→3−

∫ t

1

1

(x− 3)2
dx = +∞. The second integral also evaluates to +∞ (the

calculation is left as an Exercise).

One interesting point about this problem is that we can obtain the wrong answer if we
don’t consider the discontinutity:

(%i18) integrate(f(x),x)$

F(x):=’’(%);

(%o18) F(x):=-1/(x-3)

(%i19) F(4)-F(1);

(%o19) -3/2

That’s a good reminder to always check for problematic points on the interval of interest!

We finish with a quick plot for the sake of completeness:

(%i17) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[0,5],

yrange=[-.5,25],

color=black,

explicit(f(x),x,0,5),

filled_func=true,

filled_func=f(x),

explicit(0,x,1,4),

filled_func=false

);
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1.5 Module 1 Exercises

1. Use integrate to find a decimal approximation for the definite integral∫ 7

4

1

x2 ·
√
x− 3

dx, then make a shaded plot with an appropriate scale to show the

area represented by the integral.

2. Repeat the first exercise by defining an area function A(x) and evaluating
A(7)−A(4). You are free to choose any “starting point” you like, as long as it
doesn’t create a divergent integral.

3. Repeat the first exercise by computing the antiderivative, F (x) for

f(x) =
1

x2 ·
√
x− 3

and evaluating F (x)|74.

4. Compute

∫
x2 ·

√
1− x3 dx by making a u-substitution in the style of Example

1.2.1.

5. Use a u-substitution to compute

∫ π
6

0

sin (3x) cos3 (3x) dx in the style of Example

1.2.2. Finish the calculation by transforming the limits in terms of u rather than
transforming the antiderivative in terms of x.

6. Use trigreduce to apply “double angle formulas” to the integrand of

∫
cos4 x dx.

Perform all the resulting integrals by inspection. Check your final answer using
diff followed by trigexpand and trigsimp.

7. Compute the integral

∫ 3

−3

√
9− x2 dx by performing a trigonometric substitution in

the style of Example 1.2.3. Make a shaded plot with a square aspect ratio by using
dimensions. Explain how this integral can be computed using a simple formula
from geometry.

8. Define a function CTS(x,a,b,c) to complete the square, given the coefficients in a
quadratic polynomial in the form ax2 + bx+ c. Use your function to complete the
square on 2x2 − 3x+ 7. Check your answer using expand.

9. Use CTS(x,a,b,c) to complete the square in the denominator of

∫
dx

9x2 + 12x+ 10
.

Make a u-substitution to obtain the form

∫
1

u2 + 1
du (with possibly some

constants in front). Finally, perform the integral and transform your answer back to
x. Check using diff.

10. Finish the integral in Example 1.3.3:

∫
5x− 2

3

3x2 + 2x+ 2
dx−

∫
5

3(x+ 1)
dx. The

second integral can already be performed by inspection. The first integral can be

transformed into two integrals

∫
du

u
+

∫
constants

3x2 + 2x+ 2
dx. Finish the first piece by

inspection, then use CTS(x,a,b,c) to transform the denominator in the second
piece. Make the appropriate u-substitution to obtain an integral that can be done
by inspection. Finally, check your answer using diff.
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11. Integrate

∫
x · sin2 x dx using integration by parts in the style of Example 1.3.1.

12. When integration by parts is applied to a definite integral, we get∫ b

a

u dv = uv|ba −
∫ b

a

v du. Apply this formula to compute

∫ 2

0

x · ex dx.

13. Compute

∫
e−αt cosβt dt using integration by parts. Set up an equation with∫

e−αt cosβt dt on the left-hand side and the results of your first parts

decomposition on the right hand side. Repeat for another application of integration
by parts. After two iterations of integration by parts, you should recognize a term
containing the original integral on the right hand side. Combine the two terms
containing the original integral on the left hand side, and solve for the value of this
integral. Check your answer using diff. Throughout your calculations, use %alpha

and %beta. You will have to use declare for diff to recognize α and β as
constants.

14. Make a function DOS(x,a,b) to factor ax2 − b into two linear factors even if a and b

are not perfect squares. Apply DOS(x,a,b) to the denominator of

∫
dx

2x2 − 5
. Now

perform a partial fractions decomposition in the style of Example 1.3.3 and finish
the integral by inspection.

15. Compute the integral from the previous Exercise by using a trigonometric
substitution in the style of Examples 1.2.3 and 1.2.4. Verify that your answer is the
same as before.

16. Compute the integral

∫
1

x ·
√

1− x
dx starting with the u-substitution u2 = 1− x.

Once the integral is transformed in terms of u, use partfrac to perform a partial
fractions decomposition, then finish the u integrals by inspection. Don’t forget to
transform your final answer back to x.

17. Compute the second improper integral from Example 1.4.3: lim
t→3+

∫ 4

t

1

(x− 3)2
dx

18. Compute

∫ ∞
0

1

x2 + a2
dx by making an appropriate trigonometric substitution and

transforming the limits of integration in terms of the substitution variable.
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2.1 Midpoint Sums

If the analytic formula for a function f(x) is known, we can approximate

∫ b

a

f(x) dx by

using a midpoint Riemann sum. That is, we break the interval [a, b] into n sub-intervals
at the cut-points a = x0, x1, x2, ..., xn−1, xn = b, then we use the midpoint of each
subinterval to compute the height of each rectangle in the approximation.

We choose sub-intervals of equal width ∆x = b−a
n , and the height of the ith rectangle is

given by f
(
xi−1+xi

2

)
. Adding the rectangle areas, we obtain the midpoint approximation:

f

(
x0 + x1

2

)
∆x+ f

(
x1 + x2

2

)
∆x+ · · ·+ f

(
xn−1 + xn

2

)
∆x =

n∑
i=1

f

(
xi−1 + xi

2

)
∆x

The midpoint approximation becomes more accurate as n grows, and the rectangles
become narrower.

Example 2.1.1. Show that wxMaxima cannot compute

∫ 3

0

esin x dx analytically.

Compute the n = 20 midpoint sum approximating the integral, and make a plot
illustrating the midpoint rectangles.

We start by defining f(x) and attempting to use integrate. wxMaxima simply repeats
the integral to us, indicating that it can’t find an analytical solution.

(%i1) f(x)=%e^(sin(x))$

integrate(f(x),x,0,3);

(%o2) integrate(%e^sin(x),x,0,3)

Now we define ∆x and xi and compute the midpoint approximation:

(%i3) delx:(3-0)/20;

x(i):=’’delx*i;

(%o3) 3/20

(%o4) x(i):=3/20*i

(%i5) float(sum(f((x(i)+x(i-1))/2)*delx,i,1,20));

(%o5) 6.058676126838001

We use rectangle inside of makelist to generate a list of rectangles that works inside
wxdraw2d. Note that rectangle draws a rectangle based on a list of just two vertices at
opposite corners.

(%i6) RECTANGLES:makelist(rectangle([x(i-1),0],[x(i),f((x(i)+x(i-1))/2)])

,i,1,20)$

(%i7) load(draw)$

wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,
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yrange=[-1,3.2],

title="n=20 Midpoint Sum for f(x) on [0,3]",

color=black,

fill_color=red,

border=true,

RECTANGLES,

explicit(f(x),x,-1,4)

);

Example 2.1.2. Write a for-do loop to compute midpoint approximations of∫ 3

0

esin x dx using n = 20, 40, 60, . . . until the approximation settles down to at least three

decimal places.

First we adapt our n = 20 sum to work more generally:

(%i8) f(x):=%e^(sin(x))$

delx(n):=(3-0)/n$

x(i,n):=’’delx(n)*i$

(%i9) SUM(n):=sum((f((x(i-1,n)+x(i,n))/2)*delx(n)),i,1,n)$

Now we write and execute the do-loop:

(%i10) (print("n....MIDPOINT SUM"),

for k:1 thru 10 do

(n:(20*k),

S:(float(SUM(n))),

print(n,"","","",S))

);

n....MIDPOINT SUM

20 6.058676126838001

40 6.057171126434241

60 6.056892460067756

80 6.05679492965105

100 6.056749787496514

120 6.056725265963955
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140 6.056710480298045

160 6.05670088385024

180 6.056694304565428

200 6.056689598445805

It looks like the integral is safely settled down to 6.056, so 10 iterations is sufficient.
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2.2 Trapezoid Sums

2.2.1 For a Function Defined Analytically

When the analytic formula for f(x) is known, we can approximate

∫ b

a

f(x) dx by using

narrow trapezoids, each with a height of f(xi−1) on the left side, and f(xi) on the right
side. Once again, we divide the interval [a, b] into n equal sub-intervals of width

∆x = b−a
n , and the area of each trapezoid is given by (f(xi−1)+f(xi))

2 ·∆x. The area
approximation is then given by:

(f(x0) + f(x1))

2
·∆x+ · · ·+ (f(xn−1) + f(xn))

2
·∆x =

n∑
i=1

(f(xi−1) + f(xi))

2
·∆x

Example 2.2.1. Compute the n = 20 trapezoid approximation for

∫ 3

0

esin x dx, and

compare the answer to the midpoint approximations performed in the last example. Make
a plot to illustrate the approximation.

We begin by defining ∆x, xi and the area of a single trapezoid, then we compute the sum:

(%i1) f(x):=%e^(sin(x))$

delx:(3-0)/20$

x(i):=delx*i$

AREA(i):=((f(x(i-1))+f(x(i)))/2)*delx;

(%o4) AREA(i):=(f(x(i-1))+f(x(i)))/2*delx

(%i5) float(sum(AREA(i),i,1,20));

(%o5) 6.052656613881449

When we compare this approximation to the n = 20 midpoint sum, we see that the
trapezoid approximation is actually worse than the midpoint approximation in this case.
The trapezoids systematically underestimate the area because f(x) is concave down on
almost the entire interval of interest.

Once again, we use makelist to plot the trapezoid approximation. This time we have to
use polygon, which expects a list of vertices in order around each trapezoid:

(%i6) TRAPEZOIDS:makelist(polygon([ [x(i-1),0], [x(i),0],

[x(i),f(x(i))], [x(i-1),f(x(i-1))] ]),i,1,20)$

(%i7) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

yrange=[-1,3.2],

color=black,

border=true,

fill_color=red,

TRAPEZOIDS,

explicit(f(x),x,-1,4)

);
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2.2.2 For a Discrete Data Set

If the analytic formula for f(x) is not known (as in a list of data points), we can still
make a trapezoid approximation by simply “connecting the dots” between the points we
are given.

Example 2.2.2. In a physics experiment, the velocity of an object is measured every
0.01s to obtain the following data set:

t(s).....v(m/s)

0.01 2.3

0.02 1.8

0.03 1.8

0.04 1.7

0.05 1.5

0.06 1.5

0.07 1.3

0.08 1.1

0.09 0.8

0.10 0.5

Compute the total displacement of the object ∆x =

∫ .10

.01

v(t) dt, by using a trapezoid

approximation, then make a plot of v(t) to illustrate the approximation.

In this example, the data set is equally spaced on the t-axis, allowing us to define a fixed
∆t = 0.01. We enter the data in list format starting with lists of the x coordinates and y
coordinates, use makelist to create ordered pairs and compute the sum of trapezoid
areas by calling the necessary list elements:

(%i1) X:[.01,.02,.03,.04,.05,.06,.07,.08,.09,.10]$

Y:[2.3,1.8,1.8,1.7,1.5,1.5,1.3,1.1,.8,.5]$

POINTS:makelist([X[i],Y[i]],i,1,10)$

delt:0.01$

(%i5) TRAPEZOID(i):=0.5*(Y[i]+Y[i+1])*delt$
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sum(TRAPEZOID(i),i,1,9);

(%o6) 0.129

We obtain an approximate displacement of ∆x ≈ 0.129m. Now we proceed with the plot
by defining a list of trapezoids and calling our list elements:

(%i7) TRAPEZOIDS:makelist(polygon([[X[i],0],

[X[i+1],0],[X[i+1],Y[i+1]],[X[i],Y[i]]]),i,1,9)$

(%i8) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[0,.11],

yrange=[0,2.5],

title="Velocity-Time Data",

color=black,

border=true,

fill_color=red,

TRAPEZOIDS,

point_type=7,

points(POINTS)

);

Example 2.2.3. The force exerted by a spring is measured as a function of stretch
length to yield the following data set:

x(m).....F(N)

0.10 10

0.15 20

0.19 30

0.22 40

0.25 50

0.28 60

0.30 70

0.32 80

0.33 90

0.34 100
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Use a trapezoid approximation to compute the work done on the spring:

W =

∫ .34

.10

F (x) dx. Make a plot of F (x) to illustrate the trapezoid approximation.

This time the spacing is uneven on the x-axis, so we can’t define a fixed trapezoid width.
We adjust our trapezoid areas to use differences of adjacent x values for the width.

(%i9) kill(all)$

X:[.1,.15,.19,.22,.25,.28,.30,.32,.33,.34]$

Y:[10,20,30,40,50,60,70,80,90,100]$

POINTS:makelist([X[i],Y[i]],i,1,10)$

(%i4) TRAPEZOID(i):=0.5*(Y[i]+Y[i+1])*(X[i+1]-X[i])$

sum(TRAPEZOID(i),i,1,9);

(%o5) 10.4

We see that the total work on the spring is W ≈ 10.4 J. We plot the approximation as
before:

(%i6) TRAPEZOIDS:makelist(polygon([ [X[i],0],[X[i+1],0],

[X[i+1],Y[i+1]],[X[i],Y[i]] ]),i,1,9)$

(%i7) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[0,.4],

yrange=[0,110],

title="Force-Displacement Data",

color=black,

border=true,

fill_color=red,

TRAPEZOIDS,

point_type=7,

points(POINTS)

);
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2.3 Simpson’s Method

2.3.1 For a Function Defined Analytically

The midpoint and trapezoid approximations are both examples of approximations by
interpolating polynomials. The midpoint approximation uses polynomials of degree 0
(constant functions) to estimate the area on each sub-interval, and the trapezoid
approximation uses polynomials of degree 1 (lines) to estimate the area on each
sub-interval. Simpson’s method simply extends the idea to polynomials of degree 2; i.e.,
we approximate the function with a sequence of parabolas on each pair of subintervals.

Each Simpson’s Method parabola passes through three consecutive points on the function
we wish to integrate. It is always possible to compute the formula for a parabola passing
through three points, because the formula for a parabola y = ax2 + bx+ c has three
undetermined coefficients. The points define a system of three equations and three
unknowns.

Example 2.3.1. Compute a formula for the parabola passing through (−1, 1), (0, 3) and
(2,−1), then make a plot of the parabola together with the given points.

We start by defining a general equation for the parabola, y = ax2 + bx+ c, then we use
the points to define a system of equations. After solving the system, we substitute a, b, c
back into the general equation:

(%i1) EQN:y=a*x^2+b*x+c$

EQN1:sublis([x=-1,y=1],EQN);

EQN2:sublis([x=0,y=3],EQN);

EQN3:sublis([x=2,y=-1],EQN);

(%o2) 1=c-b+a

(%o3) 3=c

(%o4) -1=c+2*b+4*a

(%i5) solve([EQN1,EQN2,EQN3],[a,b,c]);

(%o5) [[a=-4/3,b=2/3,c=3]]

(%i6) sublis([a=-4/3,b=2/3,c=3],EQN);

(%o6) y=-(4*x^2)/3+(2*x)/3+3

Finally, we produce a plot of the parabola passing through (−1, 1), (0, 3) and (2,−1):

(%i7) PARABOLA:rhs(%);

(%o7) -(4*x^2)/3+(2*x)/3+3

(%i8) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[-3,3],

yrange=[-2,4],

title="Parabola passing through [-1,1], [0,3] and [2,-1]",

color=black,
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explicit(PARABOLA,x,-3,3),

color=red,

point_type=7,

points([ [-1,1],[0,3],[2,-1] ])

);

We apply Simpson’s Method by approximating f(x) with a separate parabola for each
pair of consecutive sub-intervals. The area under each parabola is easily computed, then

we sum all the areas to obtain the approximation to

∫ b

a

f(x) dx. If the number of

sub-intervals, n, is even and the sub-intervals have equal width, the result simplifies to
Simpson’s Formula, which can be found in any calculus text.

Example 2.3.2. Find a Simpson’s Method approximation for

∫ 3

0

esin x dx using n = 6.

Make a plot showing esin x together with a relevant section of each interpolating parabola.

Simpson’s Method tells us to fit a parabola to each consecutive pair of sub-intervals, so
we only need three parabolas for this example:

PARABOLA1 connects (x0, f(x0)), (x1, f(x1)) and (x2, f(x2))
PARABOLA2 connects (x2, f(x2)), (x3, f(x3)) and (x4, f(x4))
PARABOLA3 connects (x4, f(x4)), (x5, f(x5)) and (x6, f(x6))

For large values of n, we can fully automate the process of finding the parabolas. Here we
take a hybrid approach by automating only the computation of EQN(i) generated by
substituting (xi, f(xi)) into the general equation of a parabola:

(%i9) f(x):=%e^(sin(x))$

(%i10) GENEQN:Y=a*X^2+b*X+c$

(%i11) delx:0.5$

(%i12) x(i):=i*delx$

(%i13) EQN(i):=(sublis([X=x(i),Y=f(x(i))],GENEQN))$

Now we have three systems of equations to solve and three parabolas to construct. Note
that the substitution of a, b, and c back into GENEQN requires an extra [1] to call the
bracketed coefficients from the output of solve:
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(%i14) COEFFS1:float(solve([EQN(0),EQN(1),EQN(2)],[a,b,c]));

(%o14) [[a=0.17896846366337,b=1.140808361052482,c=1.0]]

(%i15) PARABOLA1:rhs(sublis(COEFFS1[1],GENEQN));

(%o15) 0.17896846366337*X^2+1.140808361052482*X+1.0

(%i16) COEFFS2:float(solve([EQN(2),EQN(3),EQN(4)],[a,b,c]));

(%o16) [[a=-1.241214965266928,b=3.886445799099931,c=-0.32545400911715]]

(%i17) PARABOLA2:rhs(sublis(COEFFS2[1],GENEQN));

(%o17) -1.241214965266928*X^2+3.886445799099931*X-0.32545400911715

(%i18) COEFFS3:float(solve([EQN(4),EQN(5),EQN(6)],[a,b,c]));

(%o18) [[a=-0.0090668352651675,b=-1.285680715174632,c=5.090206499424927]]

(%i19) PARABOLA3:rhs(sublis(COEFFS3[1],GENEQN));

(%o19) -0.0090668352651675*X^2-1.285680715174632*X+5.090206499424927

Now that we have the equations of all three parabolas, we can integrate each one on the
relevant sub-intervals (x0, x2), (x2, x4), and (x4, x6):

(%i20) float(integrate(PARABOLA1,X,x(0),x(2))

+integrate(PARABOLA2,X,x(2),x(4))

+integrate(PARABOLA3,X,x(4),x(6))

);

(%o20) 6.056688193799587

Finally, we plot f(x) together with the interpolating parabolas. Each parabola is plotted
slightly outside the actually integrated range just to make it easier to see what’s going on:

(%i21) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[-1,4],

yrange=[-1,3.2],

title="f(x) together with three interpolating parabolas",

color=black,

line_width=2,

explicit(f(x),x,0,3),

line_type=dots,

color=red,

line_width=1,

key="PARABOLA1",

explicit(PARABOLA1,X,x(0)-.4,x(2)+.4),

color=dark_green,

key="PARABOLA2",

explicit(PARABOLA2,X,x(2)-.4,x(4)+.4),

color=blue,

key="PARABOLA3",

explicit(PARABOLA3,X,x(4)-.4,x(6)+.4)

);
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2.3.2 *For a Discrete Data Set

Simpson’s Method can still be used to approximate an integral if n is odd or the
sub-interval spacing varies. Thus, we can apply the method to realistic data sets. We
must be particularly careful if n is odd, as the integration interval cannot be neatly split
into pairs of sub-intervals – in this case we can just use the trapezoid approximation on
the last sub-interval.

Example 2.3.3. For the same data set as Example 2.2.3, compute the total work done on

the spring W =

∫ .34

.10

F (x) dx by using interpolating parabolas on the first 8 sub-intervals

and a trapezoid on the last interval. Make a plot illustrating the approximation.

x(m).....F(N)

0.10 10

0.15 20

0.19 30

0.22 40

0.25 50

0.28 60

0.30 70

0.32 80

0.33 90

0.34 100

This time, we have to work with a list of specific data points rather than a formula for
the function we wish to integrate. In addition, we make the effort to automate as much as
we possibly can by using makelist. We also hide many intermediate results for the sake
of brevity. We begin by defining and solving the system of equations for each
interpolating parabola. The indices 2*k+1, 2*k+2 and 2*k+3 are used to call points
{(x1, y1), (x2, y2), (x3, y3)}, {(x3, y3), (x4, y4), (x5, y5)}, {(x5, y5), (x6, y6), (x7, y7)},
{(x7, y7), (x8, y8), (x9, y9)} for the four parabolas:

(%i22) kill(all)$

(%i1) x:[.1,.15,.19,.22,.25,.28,.30,.32,.33,.34]$

y:[10,20,30,40,50,60,70,80,90,100]$

POINTS:makelist([x[i],y[i]],i,1,10)$
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(%i4) GENEQN:Y=a*X^2+b*X+c$

(%i5) EQN(i):=(sublis([X=x[i],Y=y[i]],GENEQN))$

(%i6) ratprint:false$

(%i7) SOLUTIONS:makelist(float(solve([EQN(2*k+1),EQN(2*k+2),EQN(2*k+3)],

[a,b,c])),k,0,3);

(%o7) [[[a=555.5555555555555,b=61.11111111111111,c=-1.666666666666667]],

[[a=0.0,b=333.3333333333333,c=-33.33333333333334]],

[[a=3333.333333333334,b=-1433.333333333333,c=200.0]],

[[a=16666.66666666667,b=-9833.333333333334,c=1520.0]]]

Next, we substitute each of these solutions for a, b, c into the general equation
y = ax2 + bx+ c to get an equation for each interpolating parabola. The trickiest part of
this step is recognizing the list format of SOLUTIONS – it is a list of solutions, but each
solution is represented as a list containing one element (the comma-delimited solutions).
We call each element using SOLUTIONS[l+1], then we extract each solution by using an
additional [1]. A list of integrals is then computed, each on the appropriate sub-interval.
Finally, the integrals are summed:

(%i8) intPARABOLAS:makelist(rhs(sublis((SOLUTIONS[l+1])[1],GENEQN)),l,0,3)$

(%i9) INTEGRALS:makelist(integrate(intPARABOLAS[m+1],X,x[2*m+1],

x[2*m+3]),m,0,3)$

(%i10) SIMPSONPART:float(sum(INTEGRALS[i],i,1,4));

(%o10) 9.388055555555557

Now we add in the trapezoid defined on (x9, x10) and compute the total area:

(%i11) TRAPEZOIDAREA:0.5*(y[10]+y[9])*(x[10]-x[9]);

(%o11) 0.95

(%i12) SIMPSONPART+TRAPEZOIDAREA;

(%o12) 10.33805555555556

We see that the work integral comes out to W ≈ 10.34, in close agreement to the
trapezoid approximation (W ≈ 10.4) we performed in Example 2.2.3.

We finish by producing a plot of the Simpson’s method approximation together with the
trapezoid in the last sub-interval. We use makelist to prepare our parabolas to work in
wxdraw2d, including extending the domain slightly outside each interpolation interval to
make the parabolas more visible.

(%i13) graphPARABOLAS:makelist(explicit(rhs(sublis((SOLUTIONS[l+1])[1],

GENEQN)),X,x[2*l+1]-.01,x[2*l+3]+.01),l,0,3)$

(%i14) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[0,.4],

yrange=[0,110],

title="Data set with interpolating parabolas and one trapezoid",

color=black,

point_type=7,
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points(POINTS),

color=red,

line_type=dots,

graphPARABOLAS,

points_joined=true,

color=black,

line_type=solid,

points([[x[9],y[9]],[x[10],y[10]]])

);
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2.4 wxMaxima’s Built-In Quadrature Methods

The term quadrature is used to describe a variety of numerical integration methods. We
aren’t interested in getting any deeper into numerical integration, and we will only use
one numerical integration command, quad_qag. The syntax for quad_qag is the same as
the syntax for integrate, except we must enter a fifth argument: an integer between 1
and 6 indicating the particular quadrature method. The output of quad-qag lists four
numbers: the first is the numerical approximation for the integral, the second is an
approximation of the error (we ignore the others).

Example 2.4.1. Compute the integral

∫ 3

0

esin x dx using wxMaxima’s built-in

quadrature. Compare the results of all 6 varieties of quad_qag.

(%i1) f(x):=%e^(sin(x));

(%o1) f(x):=%e^sin(x)

(%i2) quad_qag(f(x),x,0,3,1);

(%o2) [6.05666953555315,5.7821357200595372*10^-12,45,0]

(%i3) quad_qag(f(x),x,0,3,2);

(%o3) [6.056669535553152,9.9580925827612082*10^-11,21,0]

(%i4) quad_qag(f(x),x,0,3,3);

(%o4) [6.05666953555315,6.7242539709168614*10^-14,31,0]

(%i5) quad_qag(f(x),x,0,3,4);

(%o5) [6.056669535553152,6.724253970916864*10^-14,41,0]

(%i6) quad_qag(f(x),x,0,3,5);

(%o6) [6.056669535553151,6.7242539709168627*10^-14,51,0]

(%i7) quad_qag(f(x),x,0,3,6);

(%o7) [6.056669535553151,6.7242539709168627*10^-14,61,0]

We see that

∫ 3

0

esin x dx ≈ 6.057, in close agreement with our previous approximations.

All methods from quad_qag agree to many decimal places.
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2.5 A Monte Carlo Method

The term Monte Carlo is used to describe a variety of numerical methods that exploit

random data. We can formulate a simple Monte Carlo method to compute

∫ b

a

f(x) dx by

equating two methods for computing the average value of a function:

1. favg =
1

b− a

∫ b

a

f(x) dx

2. favg ≈
1

N

N∑
i=1

f(xi) where N values of xi are randomly generated on [a, b].

We equate the two calculations of favg to obtain:∫ b

a

f(x) dx ≈ (b− a)

N
·
N∑
i=1

f(xi)

In wxMaxima, we can generate random decimals on [0, c] by entering random(c), making
sure to express c with a decimal place (if c is expressed as an integer, random only
generates integers).

Example 2.5.1. Compute

∫ 3

0

esin x dx by using a Monte Carlo method with N = 1000.

Repeat the calculation several times to get a sense for the uncertainty in the
approximation.

(%i1) f(x):=%e^(sin(x))$

(%i2) ((3-0)/1000)*sum(f(random(3.0)),i,1,1000);

(%o2) 6.095597917343273

(%i3) ((3-0)/1000)*sum(f(random(3.0)),i,1,1000);

(%o3) 6.105455491341729

(%i4) ((3-0)/1000)*sum(f(random(3.0)),i,1,1000);

(%o4) 6.014387493961544

In principle, we could perform a statistical analysis on several iterations of this method
and use the standard deviation to quantify the uncertainty. Perhaps it’s better to push
our computer harder by using N = 1, 000, 000:

(%i5) ((3-0)/1000000)*sum(f(random(3.0)),i,1,1000000);

(%o5) 6.057168102573812

This is very close to the answer we computed using quad_qag. My computer took close to
two minutes to compute the approximation!
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Example 2.5.2. Use a Monte Carlo method with N = 1000 to compute

∫ 3

2

e−x
2

dx.

Compare to the answer obtained by quad_qag.

In order to use random to generate random numbers on [2, 3], we start at x = 2 and add
random numbers between 0 and 1.0:

(%i6) f(x):=%e^(-x^2)$

(%i7) ((3-2)/1000)*sum(f(2+random(1.0)),i,1,1000);

(%o7) 0.0041199267231285

(%i8) quad_qag(%e^(-x^2),x,2,3,1);

(%o8) [0.0041259574970996,4.5908457058908545*10^-16,15,0]

The Monte Carlo method was accurate to a few significant digits after sampling only 1000
random points.
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2.6 Module 2 Exercises

1. Compute

∫ e

1

cos (lnx) dx using a midpoint approximation with n = 100. Make a

plot illustrating the approximation in the style of Example 2.1.1. Check your
answer using integrate.

2. Repeat the previous Exercise using a trapezoid approximation in the style of
Example 2.2.1.

3. For f(x) = coshx and g(x) = cosx, compute the trapezoid approximations with
n = 3 on [0, 1], including plots illustrating the trapezoids. Which approximation is
an underestimate? Which is an overestimate? How are the errors linked to the
concavity of f and g?

4. Voltage measurements are taken for one period in an AC circuit:

t(s)......v(t)(V)

0/1200 4.2

1/1200 67.5

2/1200 114.0

3/1200 112.7

4/1200 68.1

5/1200 -0.8

6/1200 -69.4

7/1200 -110.7

8/1200 114.1

9/1200 -68.7

10/1200 -4.6

Compute

∫ 10
1200

0

v2(t) dt using a trapezoid approximation. Include a plot to

illustrate the approximation.

5. Repeat the previous Exercise using a Simpson’s method approximation. Include a
plot showing the interpolating parabolas in the style of Example 2.3.3.

6. Compute

∫ π
2

0

cos (sinx) dx using quad_qag. Produce a shaded plot illustrating the

area represented by the integral.

7. Repeat the integral from the previous Exercise using Simpson’s method with n = 10
in the style of Example 2.3.2. Include a plot to illutrate the approximation.

8. Repeat the integral from the previous Exercise using a Monte Carlo method with
1000 random points.
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9. * We can use a Monte Carlo method to approximate π. To visualize the method,
start by using makelist to generate 100 random points in a square of side-length 2
centered at the origin. Plot the points together with the unit circle. Your plot
should look something like this:

The area of the circle is given by Acircle = π · r2 = π and the area of the square is
Asquare = 4, so we expect the fraction of points landing inside the circle is
Acircle
Asquare

= π
4 . Use your plot to find an approximation to π.

10. ** For the Monte Carlo method in the last example, we want to automate the
process of counting the points that land inside the unit circle. This can be
accomplished using a for-do loop to generate one point at a time and an if-then

statement to test whether or not each point is inside the circle. Before the loop
runs, we need to set the starting point for a counter n:0. If a point is inside the
circle, we add 1 to the counter by writing n:n+1. If we include any points landing
right on the edge of the circle, the proper if-then statement is:
if (x^2+y^2<1 or x^2+y^2=1) then n:n+1.

Finally, we use another if-then statement telling wxMaxima to report the value of
n after the last iteration of the loop.

Construct the proper do-loop, starting with a small number of iterations until
everything works properly. As you are experimenting with the program, it is wise to
ask wxMaxima to print n at each iteration to make it easier to detect any problems
in the calculation. Once you are sure it’s working, use the loop to generate 10,000
random points. Use the fraction of points inside the circle to approximate π three
separate times to get a sense for the uncertainty in the answer.
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3.1 Area Integrals

3.1.1 Area and Physical Integration

Recall that

∫ b

a

f(x) dx gives us the area bounded between f(x) and the x-axis. It is

useful to visualize an area element at x represented by a thin rectangle of width dx. We
refer to this thin slice as dA.

Once dA is phrased entirely in terms of one variable (here, dA = f(x) · dx), we use

integration to sum up all the area elements. We can say A =

∫
dA =

∫ b

a

f(x) dx, and we

view the integral as a summation device to add up the dA’s. This conceptual approach is
often called “physical integration”, and it is very powerful when we apply integration in a
geometric setting.

Example 3.1.1. Plot f(x) = e−0.2·x · cosx on [0, π2 ] together with an area element at

x = 1. Set up the integral A =

∫
dA and write dA in terms of x to obtain a definite

integral. Finally, use wxMaxima to compute the area and make a shaded plot.

We start with the sketch of f(x) and dA:

(%i1) f(x):=%e^(-0.2*x)*cos(x)$

wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

title="f(x) with dA near x=1",

color=black,

explicit(f(x),x,0,%pi/2),

border=false,

color=red,

rectangle([1,0],[1.05,f(1.05)]),

color=black,

label(["dA",0.95,0.2])

);

62



dA is just the product of height and width for the area element: f(x) · dx. Now we set up

the integral: A =

∫
dA =

∫
f(x) dx =

∫ π
2

0

e−0.2·x · cosx dx

The integral is simple to compute using integrate. We start with ratprint:false to
suppress a list of ratprint warnings, and we find a decimal approximation using float:

(%i2) ratprint:false$

(%i3) integrate(f(x),x,0,%pi/2);

(%o3) (25*%e^(-%pi/10))/26+5/26

(%i4) float(%);

(%o4) 0.89461797216216

We finish with a shaded plot:

(%i5) wxdraw2d(

grid=true,

xrange=[-0.5,2],

yrange=[-0.5,1.2],

xaxis=true,

yaxis=true,

title="Area Bounded by f(x) on [0,pi/2]",

fill_color=grey,

filled_func=true,

filled_func=f(x),

explicit(0,x,0,%pi/2),

filled_func=false,

color=black,

explicit(f(x),x,-0.5,2)

);
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3.1.2 Area Bounded Between Two Functions

To compute the area bounded between two functions, we simply have to visualize an area
element and write down dA in terms of the given functions. Then we use the integral

A =

∫
dA to add up all the area elements on the appropriate interval.

Example 3.1.2. Compute the area bounded between f(x) = 2− x2 and g(x) = x.

We start with a quick sketch:

(%i1) f(x):=2-x^2$

g(x):=x$

(%i3) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[-2,2],

yrange=[-2,2],

title="Area bounded between f(x) and g(x).",

color=black,

key="f(x)",

explicit(f(x),x,-2,2),

color=red,

key="g(x)",

explicit(g(x),x,-2,2)

);
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Now we determine the appropriate integration interval: the bounded area occurs between
the two intersections of our curves.

(%i4) solve(f(x)=g(x),x);

(%o4) [x=1,x=-2]

Finally, we can visualize an area element on the integration interval and write down its
formula. Here, we use a thin rectangle to show an area element at x = −0.5:

(%i5) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[-2,2],

yrange=[-2,2],

title="Area bounded between f(x) and g(x).",

color=red,

border=false,

rectangle([-0.5,g(-0.5)],[-0.45,f(-0.45)]),

color=black,

label(["dA",-0.33,1]),

key="f(x)",

explicit(f(x),x,-2,2),

color=red,

key="g(x)",

explicit(g(x),x,-2,2)

);
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We see that the area element has a height of f(x)− g(x), so we get dA = [f(x)− g(x)] ·dx.

We add up the area elements by computing the integral A =

∫
dA =

∫ 1

−2
[f(x)− g(x)] dx:

(%i6) float(integrate((f(x)-g(x)),x,-2,1));

(%o6) 4.5

We obtain A = 4.5 units. We can also produce a filled plot of the area we have computed:

(%i7) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[-2,2],

yrange=[-2,2],

title="Area bounded between f(x) and g(x).",

fill_color=grey,

filled_func=true,

filled_func=f(x),

explicit(g(x),x,-2,1),

filled_func=false,

color=black,

key="f(x)",

explicit(f(x),x,-2,2),

color=red,

key="g(x)",

explicit(g(x),x,-2,2)

);

Example 3.1.3. Compute the area bounded between f(x) = coshx and g(x) = 5 cos 3x.

We start with a sketch:

(%i8) f(x):=cosh(x)$

g(x):=5*cos(3*x)$

wxdraw2d(

grid=true,
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xaxis=true,

yaxis=true,

xrange=[-4,4],

yrange=[-6,6],

title="Area bounded between f(x) and g(x).",

color=black,

key="f(x)",

explicit(f(x),x,-4,4),

color=red,

key="g(x)",

explicit(g(x),x,-4,4)

);

We see that both functions are even, so we can just find the area to the right of x = 0 and
double the result. To verify that the functions are even:

(%i9) f(-x);

g(-x);

(%o9) cosh(x)

(%o10) 5*cos(3*x)

We have to keep in mind that we are no longer computing signed area but geometric
area, which is always positive. Thus, when f(x) lies above g(x), the area element is
[f(x)− g(x)] · dx, but when g(x) lies above f(x), the area element becomes
[g(x)− f(x)] · dx. We have to split the integration interval into three pieces according to
the intersections of f(x) and g(x), then we add up the areas and multiply by 2:

(%i11) x1:find_root(f(x)-g(x),0,1);

x2:find_root(f(x)-g(x),1.5,2);

x3:find_root(f(x)-g(x),2,2.5);

(%o11) 0.44947432956866

(%o12) 1.792473165779467

(%o13) 2.219127938640189

(%i14) ratprint:false$

A1:float(integrate(g(x)-f(x),x,0,x1));

A2:float(integrate(f(x)-g(x),x,x1,x2));

A3:float(integrate(g(x)-f(x),x,x2,x3));

(%o14) 1.160865665363456

(%o15) 5.39123022939955
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(%o16) 0.29427502144913

(%i17) A1+A2+A3;

(%o17) 6.846370916212132

(%i18) %*2;

(%o18) 13.69274183242426

We obtain a total area A ≈ 13.7. We finish with a filled plot for the right half of the area:

(%i19) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[0,3],

title="Area bounded between f(x) and g(x).",

fill_color=grey,

filled_func=true,

filled_func=g(x),

explicit(f(x),x,0,x1),

filled_func=false,

filled_func=true,

filled_func=f(x),

explicit(g(x),x,x1,x2),

filled_func=false,

filled_func=true,

filled_func=g(x),

explicit(f(x),x,x2,x3),

filled_func=false,

color=black,

key="f(x)",

explicit(f(x),x,0,3),

color=red,

key="g(x)",

explicit(g(x),x,0,3)

);
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3.2 Solids of Revolution

A solid of revolution is a three-dimensional object created by revolving the graph of a
function f(x) about an axis (usually the x or y axis). Solids of revolution have cylindrical
symmetry, making their volumes relatively easy to compute. We use a physical integration
approach by visualizing a small volume element dV and summing the elements with an

integral: V =

∫
dV . The cylindrical symmetry of a solid of revolution gives us two main

options for choosing dV : the “disk/washer” method and the “cylindrical shell” method.

Note: In the following examples, we use sets of parametric equations to plot solids of
revolution in wxdraw3d. The 3d graphs are a useful tool for visualization, but the
mathematics required to plot them is more appropriate for students who have taken a
multivariable calculus course. We include all the code for the sake of completeness.

3.2.1 Disks and Washers

The “disk/washer” method uses volume elements made of thin cylindrical slices. The thin
slices are disks when the object is solid, and the slices are “washers” when the object has
a hole along the symmetry axis.

Example 3.2.1. Plot f(x) = x2 and the solid of revolution obtained by rotating f(x) on
[0, 2] about the x-axis. Include a disk dV in the plot. Finally, formulate dV in terms of a
single variable and use an integral to sum the volume elements.

(%i1) wxdraw2d(

dimensions=[600,600],

xrange=[0,3],

yrange=[-4,4],

xaxis=true,

yaxis=true,

xtics=false,

ytics=false,

line_width=2,

title="f(x)=x^2 on [0,2]",

color=black,

explicit(x^2,x,0,2)

);

(%i2) wxdraw3d(

axis_3d=false,

dimensions=[600,600],

view=[85,10],

xrange=[0,3],

yrange=[-4,4],

zrange=[-4,4],

xtics=false,

ytics=false,

ztics=false,

color=black,

nticks=600,
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line_width=2,

parametric(t,0,0,t,0,3),

parametric(0,t,0,t,-4,4),

parametric(0,0,t,t,-4,4),

color=dark_grey,

parametric_surface(r,r^2*cos(t),r^2*sin(t),r,0,2,t,0,2*%pi),

color=black,

parametric_surface(r,r^2*cos(t),r^2*sin(t),r,1.3,1.4,t,0,2*%pi),

color=dark_red,

parametric_surface(1.4,u^2*cos(t),u^2*sin(t),u,0,1.4,t,0,2*%pi)

);

Although the z-axis is technically pointing up in this picture, the symmetry of the graph
allows us to look at the vertical axis as y. The curved surface is “swept out” as we rotate
y = x2 about the x-axis.

dV is included in black, and we say it has a (horizontal) thickness of dx and a radius of
x2 for the particular x location of the disk (x2 is the distance from the x-axis to a point
on the original curve). The volume of the disk is the product of the area of the base and
the thickness, so dV = π · (x2)2 · dx. Now we can set up the volume integral with the
limits of integration corresponding to x:

V =

∫
dV =

∫ 2

0

π · x4 dx

This integral isn’t too hard to compute by hand, but we use wxMaxima for practice:

(%i3) integrate(%pi*x^4,x,0,2);

(%o3) (32*%pi)/5

(%i4) float(%);

(%o4) 20.10619298297468

The volume comes out to V = 32π
5 ≈ 20.1 units.
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Example 3.2.2. Plot f(x) = x2 and the solid of revolution obtained by rotating f(x) on
[0, 2] about the y-axis. Include a disk dV in the plot. Finally, formulate dV in terms of a
single variable and use an integral to sum the volume elements.

(%i5) wxdraw2d(

dimensions=[600,600],

xrange=[-3,3],

yrange=[0,9],

xaxis=true,

yaxis=true,

xtics=false,

ytics=false,

line_width=2,

title="f(x)=x^2 on [0,2]",

color=black,

explicit(x^2,x,0,2)

);

(%i6) wxdraw3d(

axis_3d=false,

dimensions=[600,600],

view=[85,10],

xrange=[-3,3],

yrange=[-3,3],

zrange=[0,9],

xtics=false,

ytics=false,

ztics=false,

color=black,

nticks=600,

line_width=2,

parametric(t,0,0,t,-3,3),

parametric(0,t,0,t,-3,3),

parametric(0,0,t,t,0,6),

color=dark_grey,

parametric_surface(r*cos(t),r*sin(t),r^2,r,0,2,t,0,2*%pi),

color=black,

parametric_surface(r*cos(t),r*sin(t),r^2,r,1.3,1.4,t,0,2*%pi),

color=dark_red,

parametric_surface(r*cos(t),r*sin(t),1.4^2,r,0,1.4,t,0,2*%pi)

);
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Again, it is easier to produce a plot with f(x) revolved about the z-axis, but we can view
it as the y-axis: we produced the plot simply to aid our intuition. This time, the
thickness of the disk is dy. The disk is located at a vertical position of y, where the radius
is given as x =

√
y, so the volume of the disk is dV = π · (√y)2 · dy. We set up the volume

integral with the limits of integration corresponding to y (as x goes from 0 to 2, y = x2

goes from 0 to 4):

V =

∫
dV =

∫ 4

0

π · y dy

Again, the integral is simple to compute by hand, but we opt to use wxMaxima:

(%i7) integrate(y,y,0,4);

(%o7) 8

The volume comes out to V = 8 units.

Example 3.2.3. Plot the region bounded between f(x) = 0.3 · x and g(x) = sinx, then
plot the solid of revolution obtained by rotating this region about the x-axis, including a
“washer” volume element dV . Finally, set up and compute the volume integral for the
solid.

The plot of bounded area between f(x) and g(x) requires us to find the intersections by
solving 0.3 · x = sinx with find_root. We use symmetry to infer the second intersection
from the first. We plot the area using filled_func for the shading:

(%i8) kill(all)$

(%i1) f(x):=0.3*x$

g(x):=sin(x)$

(%i3) find_root(f(x)-g(x),x,1,4);

(%o3) 2.356441149856161
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(%i4) wxdraw2d(

xaxis=true,

yaxis=true,

xtics=false,

ytics=false,

dimensions=[600,600],

xrange=[-%pi,%pi],

yrange=[-1.2,1.2],

title="Area bounded between f(x) and g(x)",

fill_color=grey,

filled_func=true,

filled_func=f(x),

explicit(g(x),x,-2.356,0),

filled_func=false,

filled_func=true,

filled_func=g(x),

explicit(f(x),x,0,2.356),

filled_func=false,

line_width=2,

color=black,

key="f(x)",

explicit(f(x),x,-%pi,%pi),

color=red,

key="g(x)",

explicit(g(x),x,-%pi,%pi)

);

Again, plotting the solid of revolution is more appropriate for students of multivariable
calculus, but we include the code for reference:

(%i5)wxdraw3d(

axis_3d=false,

dimensions=[600,600],

view=[85,10],

xrange=[-%pi,%pi],

yrange=[-1.2,1.2],

zrange=[-1.2,1.2],

xtics=false,

ytics=false,

ztics=false,

color=black,

nticks=200,

line_width=2,

parametric(t,0,0,t,-%pi,%pi),

parametric(0,t,0,t,-1.2,1.2),

parametric(0,0,t,t,-1.2,1.2),

color=grey,

transparent=true,

parametric_surface(r, g(r)*sin(t),g(r)*cos(t),r,-2.356,2.356,t,

0,2*%pi),
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transparent=false,

color=dark_grey,

parametric_surface(r, f(r)*sin(t), f(r)*cos(t),r,-2.356, 2.356,t,

0,2*%pi),

color=black,

parametric_surface(r, g(r)*sin(t), g(r)*cos(t),r,1.5,1.6,t,0,2*%pi),

color=dark_red,

parametric_surface(1.6, u*sin(t),u*cos(t),u,f(1.6),g(1.6),t,0,2*%pi)

);

For the volume calculation, we can just find the volume of the right half and multiply by
2. The volume of the “washer” is still given by the product of area and thickness, and the
area of the base is just the area of the outer circle less the area of the inner circle:
A = π · r2outer − π · r2inner. Thus dV =

(
π · (sinx)2 − π · (0.3 · x)2

)
· dx. Finally, we set up

the volume integral:

V =

∫
dV = 2 ·

∫ 2.356

0

π · (sinx)2 − π · (0.3 · x)2 dx

Computing the integral in wxMaxima:

(%i6) ratprint:false$

(%i7) float(2*integrate(%pi*(sin(x))^2-%pi*(0.3*x)^2, x, 0, 2.356));

(%o7) 6.507331412313022

We obtain a volume of V ≈ 6.5 units.
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3.2.2 Cylindrical Shells

A solid of revolution can also be decomposed into volume elements given by nested
cylindrical shells. The volume of a cylindrical shell of height h, radius r, and thickness dr
is found by “unrolling” the shell into a rectangular slab. When a shell is unrolled, the
length is 2πr (the circumference of the original shell). Thus, we use dV = 2πr · h · dr
whenever we decompose a solid into cylindrical shells.

Example 3.2.4. Plot the area bounded by f(x) = coshx on [−2, 2], then plot the solid
formed by revolving this area about the y-axis. Include a picture of a thin cylindrical
shell volume element. Finally, set up and compute the volume integral.

We start by defining f(x) and plotting the shaded area:

(%i8) kill(all)$

(%i1) f(x):=cosh(x)$

wxdraw2d(

xaxis=true,

yaxis=true,

xtics=false,

ytics=false,

dimensions=[600,600],

xrange=[-2.5,2.5],

yrange=[-0.1,4],

title="Area under f(x)=cosh(x)",

fill_color=grey,

filled_func=true,

filled_func=f(x),

explicit(0,x,-2.0,2.0),

filled_func=false,

line_width=2,

color=black,

explicit(f(x),x,-2.5,2.5)

);

Again, the code for the 3d plot is included for reference:

(%i3) wxdraw3d(

axis_3d=false,

dimensions=[600,600],

view=[75,10],

xrange=[-2.5,2.5],

yrange=[-2.5,2.5],

zrange=[0,4],

xtics=false,

ytics=false,

ztics=false,

color=black,

nticks=600,

line_width=2,

parametric(t,0,0,t,-2.5,2.5),
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parametric(0,t,0,t,-2.5,2.5),

parametric(0,0,t,t,-0.1,4),

color=dark_grey,

parametric_surface(r*cos(t),r*sin(t),cosh(r),r,0,2,t,0,2*%pi),

color=grey,

parametric_surface(2*cos(t),2*sin(t),u,t,0,2*%pi,u,0,cosh(2)),

color=black,

parametric_surface(1.3*cos(t),1.3*sin(t),u,u,0,cosh(1.3),t,0,2*%pi),

color=dark_red,

parametric_surface(r*cos(t),r*sin(t),cosh(1.3),r,1.2,1.3,t,0,2*%pi)

);

The radius of the cylindrical shell is x, the height is coshx and the thickness is dx. When
we unroll the shell, we get a slab with length 2πx, height coshx and thickness dx, so
dV = 2πx · coshx dx. Now we can set up the volume integral and finish the calculation:

V =

∫
dV =

∫ 2

0

2πx · coshx dx

(%i4) float(integrate(2*%pi*x*cosh(x),x,0,2));

(%o4) 28.22108466978007

We obtain a volume V ≈ 28.2 units.
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3.3 Arc Length

3.3.1 As a Limiting Process

The arc length of a curve f(x) on can be viewed as a limiting process: we break [a, b] into
n sub-intervals at x0, x1, ..., xn, then we compute the line segments connecting all the
adjacent points on the curve (xi, f(xi)) and (xi+1, f(xi+1)). Finally, we add the lengths
of all the line segments to obtain an approximation to the arc length of f(x) on [a, b].
Clearly, as n becomes larger, the approximation becomes more accurate.

Example 3.3.1. Plot the n = 2, n = 5, n = 10 and n = 20 arc length approximations for

f(x) =
ex

x3
on [1, 5]. Compute the numerical value for each approximation. Finally,

improve on the accuracy of your approximation by computing the arc length for n = 1000.

First, we define f(x), a function LINE(a,b,c,d) computing the equation of a line
connecting two arbitrary points (a, b) and (c, d), and a function LENGTH(a,b,c,d) to
compute the length of a line segment connecting (a, b) and (c, d):

(%i1) f(x):=(e^x)/(x^3)$

SLOPE(a,b,c,d):=(d-b)/(c-a)$

LINE(a,b,c,d):=SLOPE(a,b,c,d)*(x-a)+b$

LENGTH(a,b,c,d):=sqrt((c-a)^2+(d-b)^2)$

The next step is to define xi as a function of i and n. We use ∆x = (5− 1)/n:

(%i5) delx(n):=(5-1)/n$

x(n,i):=1+(i)*delx(n)$

We assign each value of n and use makelist to generate line segments in the correct form
for wxdraw2d:

(%i7) n:2$

SEGMENTS2:makelist(explicit(LINE(x(n,i),f(x(n,i)),

x(n,i+1),f(x(n,i+1))),x,x(n,i),x(n,i+1)),i,0,n-1)$

(%i9) n:5$

SEGMENTS5:makelist(explicit(LINE(x(n,i),f(x(n,i)),

x(n,i+1),f(x(n,i+1))),x,x(n,i),x(n,i+1)),i,0,n-1)$

(%i11) n:10$

SEGMENTS10:makelist(explicit(LINE(x(n,i),f(x(n,i)),

x(n,i+1),f(x(n,i+1))),x,x(n,i),x(n,i+1)),i,0,n-1)$

(%i13) n:20$

SEGMENTS20:makelist(explicit(LINE(x(n,i),f(x(n,i)),

x(n,i+1),f(x(n,i+1))),x,x(n,i),x(n,i+1)),i,0,n-1)$

Finally, we produce a plot of each approximation:

(%i15) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[0.5,5.5],
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yrange=[0,3],

title="n=2 arc length approximation",

color=black,

line_type=dots,

explicit(f(x),x,1,5),

line_width=2,

color=red,

SEGMENTS2

);

(%i16) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[0.5,5.5],

yrange=[0,3],

title="n=5 arc length approximation",

color=black,

line_type=dots,

explicit(f(x),x,1,5),

line_width=2,

color=red,

SEGMENTS5

);

(%i17) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[0.5,5.5],

yrange=[0,3],

title="n=10 arc length approximation",

color=black,

line_type=dots,

explicit(f(x),x,1,5),

line_width=2,

color=red,

SEGMENTS10

);

(%i18) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[0.5,5.5],

yrange=[0,3],

title="n=20 arc length approximation",

color=black,

line_type=dots,
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explicit(f(x),x,1,5),

line_width=2,

color=red,

SEGMENTS20

);

Now we can compute the numerical values of all the approximations, including n = 1000:

(%i19) n:2$

APPROX2:float(sum(LENGTH(x(n,i),f(x(n,i)),x(n,i+1),f(x(n,i+1))),

i,0,n-1));

(%o20) 4.858925140077406

(%i21) n:5$

APPROX5:float(sum(LENGTH(x(n,i),f(x(n,i)),x(n,i+1),f(x(n,i+1))),

i,0,n-1));

(%o22) 5.168139881862706

(%i23) n:10$

APPROX10:float(sum(LENGTH(x(n,i),f(x(n,i)),x(n,i+1),f(x(n,i+1))),

i,0,n-1));

(%o24) 5.213749217721892

(%i25) n:20$

APPROX20:float(sum(LENGTH(x(n,i),f(x(n,i)),x(n,i+1),f(x(n,i+1))),

i,0,n-1));
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(%o26) 5.224566917514401

(%i27) n:1000$

APPROX1000:float(sum(LENGTH(x(n,i),f(x(n,i)),x(n,i+1),f(x(n,i+1))),

i,0,n-1));

(%o28) 5.228147830313162

We see that the arc length is approaching a limiting value of about 5.23.

Example 3.3.2. Estimate π by using an n = 1000 arc length approximation to compute
the arc length of a semicircle of radius 1. What percent error is obtained?

The explicit equation for the upper half of the unit circle is f(x) =
√

1− x2. The
circumference of the unit circle is 2πr = 2π, so the semicircle should have an arc length of
π. We copy the relevant code from the last example, using an interval [−1, 1], so that
delx(n)=2/n and x(n,i) starts at −1:

(%i29) kill(all)$

f(x):=sqrt(1-x^2)$

LENGTH(a,b,c,d):=sqrt((c-a)^2+(d-b)^2)$

delx(n):=2/n$

x(n,i):=-1+(i)*delx(n)$

n:1000$

float(sum(LENGTH(x(n,i),f(x(n,i)),x(n,i+1),f(x(n,i+1))),i,0,n-1));

(%o6) 3.141566356216483

(%i7) float(100*(%-%pi)/%pi);

(%o7) -8.3707139052572146*10^-4

Our approximation of π misses by only .0008%.
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3.3.2 As a Physical Integral

We can also approach the arc length problem symbolically by visualizing a small arc
length element ds on the graph of f(x):

When we zoom in on ds, we see that it can be decomposed into x and y components, and
we apply the pythagorean theorem to obtain ds =

√
(dx)2 + (dy)2.

Finally, we factor dx out of this expression to obtain ds =

√
1 +

(
dy
dx

)2
· dx , and we set

up arc length as an integral:

S =

∫
ds =

∫ b

a

√
1 + (f ′(x))2 dx

In practice, this integral can rarely be computed by hand, but it is simple to obtain a
numerical approximation in wxMaxima.

Example 3.3.3. Compute the arc length of f(x) =
ex

x3
on [1, 5] and compare with the

n = 1000 approximation obtained in Example 3.3.1

(%i8) f(x):=%e^x/(x^3);

(%o8) f(x):=%e^x/x^3

(%i9) f_prime:diff(f(x),x);

(%o9) %e^x/x^3-(3*%e^x)/x^4

(%i10) integrate(sqrt(1+(f_prime)^2),x,1,5);

(%o10) integrate(sqrt((%e^x/x^3-(3*%e^x)/x^4)^2+1),x,1,5)

wxMaxima repeats the integral to us, indicating that it can’t find an analytical solution.
We use quad_qag to get an approximation:

(%i36) quad_qag(sqrt(1+(f_prime)^2),x,1,5,1);

(%o36) [5.228149260997872,6.6513611026699459*10^-9,75,0]

We find that the arc length is about 5.23, as before. In fact, the two answers agree in the
first five decimal places!
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3.4 Surface Area

A surface area of revolution can be computed by slicing it into thin ribbons. Each ribbon
forms an area element, dA:

We “unroll” dA to find its area: the width of each ribbon is given by an arc element, ds,
of the curve we revolved, and the length is found by applying the formula for the
circumference of a circle. Once dA is phrased entirely in terms of one variable, we
integrate to sum the area elements.

Note: once again, the 3d plots are more appropriate for students who have seen
multivariable calculus, but we include them here for completeness.

Example 3.4.1. Compute the area of the surface created by revolving f(x) = coshx
about the x-axis on [−2, 2].

We begin by producing plots of f(x) and the corresponding surface of revolution:

(%i1) wxdraw2d(

dimensions=[600,600],

xrange=[-2.2,2.2],

yrange=[-4,4],

xaxis=true,

yaxis=true,

xtics=false,

ytics=false,

line_width=2,

title="f(x)=cosh(x) on [-2,2]",

color=black,

explicit(cosh(x),x,-2,2)

);

(%i2) wxdraw3d(

axis_3d=false,

dimensions=[600,600],

view=[85,10],
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xrange=[-2.2,2.2],

yrange=[-4,4],

zrange=[-4,4],

xtics=false,

ytics=false,

ztics=false,

color=black,

line_width=2,

parametric(t,0,0,t,-2.2,2.2),

parametric(0,t,0,t,-4,4),

parametric(0,0,t,t,-4,4),

nticks=600,

surface_hide=true,

wired_surface=true,

color=dark_grey,

parametric_surface(r,cosh(r)*cos(t),cosh(r)*sin(t),r,-2,2,t,0,2*%pi),

color=dark_red,

parametric_surface(r,1.01*cosh(r)*cos(t),1.01*cosh(r)*sin(t),

r,1,1.2,t,0,2*%pi)

);

ds is a small element of arc on the graph of f(x) = coshx. Again, we phrase ds in terms

of f ′(x): ds =
√

(dx)2 + (dy)2 =
√

1 + (dy
dx )2 · dx. Since coshx is the radius of the area

element at x, we can write the length of the “unrolled” area element as 2π · coshx. We
use wxMaxima to compute the formula for the area element dA entirely in terms of x:

(%i3) f(x):=cosh(x)$

dels:sqrt(1+(diff(f(x),x))^2)$

delA:2*%pi*f(x)*dels;

(%o5) 2π cosh (x)

√
sinh (x)

2
+ 1
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Finally, we add up all the surface area elements using an integral:

A =

∫
dA =

∫ 2

−2
2π · coshx

√
(sinhx)2 + 1 dx

(%i6) integrate(%,x,-2,2);

(%o6) (%e^(-4)*(%e^8+8*%e^4-1)*%pi)/2

(%i7) float(%);

(%o7) 98.30017399792946

We obtain a surface area of about 98.3 units.

Example 3.4.2. Compute the area of the surface obtained by revolving
f(x) = sin 3x+ x about the y-axis on [0, 1.9].

Again, we start with the 2d and 3d plots:

(%i8) f(x):=sin(3*x)+x$

wxdraw2d(

dimensions=[600,600],

xrange=[-2.2,2.2],

yrange=[0,3],

xaxis=true,

yaxis=true,

xtics=false,

ytics=false,

line_width=2,

title="f(x)=sin(3x)+x on [0,1.9]",

color=black,

explicit(f(x),x,0,1.9),

line_width=3,

color=red,

explicit((f(1.8)-f(1.7))/.1*(x-1.7)+f(1.7),x,1.7,1.8)

);

(%i9) wxdraw3d(

axis_3d=false,

dimensions=[600,600],

view=[85,10],

xrange=[-2.2,2.2],

yrange=[-2.2,2.2],

zrange=[0,3],

xtics=false,

ytics=false,

ztics=false,

color=black,

line_width=2,

parametric(t,0,0,t,-2.2,2.2),
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parametric(0,t,0,t,-2.2,2.2),

parametric(0,0,t,t,0,3),

nticks=600,

surface_hide=true,

wired_surface=true,

color=dark_grey,

parametric_surface(r*cos(t),r*sin(t),f(r),r,0,1.9,t,0,2*%pi),

color=dark_red,

parametric_surface(r*cos(t),r*sin(t),f(r),r,1.7,1.8,t,0,2*%pi)

);

Once again, we write ds =
√

1 + (f ′(x))2 dx. This time, each ring has a radius of x, so
dA has a length of 2π · x. We assemble dA in wxMaxima:

(%i10) sqrt(1+(diff(f(x),x))^2)*2*%pi*x;

(%o10) 2π x

√
(3 cos (3x) + 1)

2
+ 1

Finally, we add up all the area elements with an integral:

A =

∫
dA =

∫ 1.9

0

2π x

√
(3 cos (3x) + 1)

2
+ 1 dx

When we try integrate, wxMaxima fails to produce an answer, so we find a decimal
approximation using quad_qag:

(%i11) quad_qag(%,x,0,1.9,1);

(%o11) [22.52375662706631,1.6729090642515012*10^-7,195,0]

We find a surface area A ≈ 22.5 units.
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3.5 Module 3 Exercises

1. Compute a decimal approximation for the signed area bounded by f(x) = −x2 + 2x
on [0, 4]. Produce a shaded plot, using red for the positive area contribution and
blue for the negative area contribution.

2. Compute a decimal approximation for the area bounded between f(x) =
√

1− x2
and g(x) = cos (π2x). You can use symmetry to streamline your work, but you
should include the proper algebraic argument to justify the use of symmetry.
Produce a filled plot to illustrate the area you computed.

3. Use a plot to investigate the graphs of
f(x) = (x− 3)(x− 2)(x− 1)x(x+ 1)(x+ 2)(x+ 3) and g(x) = ex. Use wxMaxima
to find all the intersections of these two functions, then compute the area bounded
between them. As in Example 3.1.3, you must be careful to make every area
contribution in your calculation positive by choosing the correct difference of
functions in each area integral.

4. Compute the volume of the solid created by revolving f(x) = cosx on [0, π] about
the y-axis. Note: since we are working on the “agreed-upon” domain restriction for
the cosine function, we can ignore the warning that “some solutions may be lost”.

(a) Use the disk method. Make sure to explicitly state the volume element dV
before adding up the elements with an integral.

(b) Use the cylindrical shell method. Make sure to explicitly state the volume
element dV before adding up the elements with an integral.

(c) * Use wxdraw3d to make plots of the solid together with each type of volume
element.

5. Repeat the last example for revolution about the x axis instead of the y axis.

6. Make a shaded plot for the region bounded by f(x) = 1 + 0.5x and g(x) = x on
[0, 2].

(a) Use the washer method to compute the volume of the solid obtained by
revolving this region about the y-axis.

(b) Use the washer method to compute the volume of the solid obtained by
revolving the region about the x-axis.

(c) * Use wxdraw3d to make plots of each solid, including a volume element.

7. Make a shaded plot for the region bounded by f(x) = sinx and g(x) = cosx
between their first two intersections on [0, 3π2 ]. Use the washer method to compute
the volume of the solid obtained by revolving this region about the y-axis. Note:
while the cosine is constrained to its standard domain restriction of [0, π], the sine
function is not. You will have to think carefully about how to adjust the outer
radius on [π2 ,

3π
2 ]. Verify that the same answer is obtained using the cylindrical shell

method.

8. Compute the arc-length for the function f(x) = sinx on [0, 2π] using two different
methods:
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(a) Use a limiting process with n = 4, 8, 16, 32, 64 sub-intervals, including plots of
each approximation.

(b) Use the integral formula for arc-length to compute a decimal approximation.

(c) Compute a percent error comparing the n = 64 approximation and the integral
method.

9. Compute the area of the surface obtained by revolving f(x) = e−0.2x cos 3x about
the x-axis on [0, 10]. *Plot the surface in wxdraw3d.

10. Compute the area of the surface obtained by revolving f(x) = e−0.2x cos 3x on
[0, 10] about the y-axis. *Plot the surface in wxdraw3d.

11. Compute the area of a circle of radius R in two different ways:

(a) Use the equation for the upper half of a semicircle and directly compute the
area by integrating with respect to x.

(b) Use concentric rings as surface area elements. Each ring should have a radius
of r and a thickness of dr. “Unroll” a ring and compute the area element dA,
then integrate to add up the area elements.

12. Compute the volume of a cylinder of radius R and height h by considering it as a
solid of revolution for the line x = R revolved about the y-axis.

(a) Use the disk method. Make sure to explicitly state the volume element dV
before adding up the elements with an integral.

(b) Use the shell method. Make sure to explicitly state the volume element dV
before adding up the elements with an integral.

(c) * Use wxdraw3d to produce a picture of the cylinder using a radius of 1.

13. Compute the volume of a thick cylindrical shell of inner radius a, outer radius b and
height h.

(a) Use the washer method. Make sure to explicitly state the volume element dV
before adding up the elements with an integral.

(b) Use the shell method. Make sure to explicitly state the volume element dV
before adding up the elements with an integral.

(c) * Use wxdraw3d to produce a picture of the thick shell using an inner radius of
1 and an outer radius of 2. You will have to create three parametric surfaces:
the inner cylinder, the outer cylinder and the “washer” that caps the end.

14. Compute the volume of a sphere of radius R by considering a hemisphere as a
surface of revolution for a curve f(x) defined on [0, R].

(a) Use the disk method. Make sure to explicitly state the volume element dV
before adding up the elements with an integral.

(b) Use the shell method. Make sure to explicitly state the volume element dV
before adding up the elements with an integral.

(c) * Use makelist and wxdraw3d to generate 20 stacked disks in one plot and 20
nested cylindrical shells in another plot illustrating each method of integration
for a sphere of radius 1.
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15. Compute the volume of a cone of height h with a base of radius R by considering
the cone as a solid of revolution of a line segment defined on [0, R].

(a) Use the disk method. Make sure to explicitly state the volume element dV
before adding up the elements with an integral.

(b) Use the shell method. Make sure to explicitly state the volume element dV
before adding up the elements with an integral.

(c) * Use makelist and wxdraw3d to generate 20 stacked disks in one plot and 20
nested cylindrical shells in another plot illustrating each method of integration
for a cone of height 1 and radius 1.

16. Compute the surface area for the cone in the previous example.

(a) Using an x integral. Make sure to explicitly state the area element dA before
adding up the elements with an integral.

(b) Using a y integral. Make sure to explicitly state the area element dA before
adding up the elements with an integral.

(c) * Use wxdraw3d to make a plot of the cone, including a surface area element
dA.

88



Module 4

Ordinary Differential Equations

4.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Separable Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 wxMaxima’s Built-In ODE Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Direction Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 Euler’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.6 Module 4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Key Commands Included in This Module

declare sublis makelist bc2

diff float implicit fullratsimp

solve rhs ode2 load(drawdf)

subst lhs ic1 wxdrawdf

wxdraw2d integrate ic2 for-do

89



4.1 Basic Definitions

An ordinary differential equation (ODE) is an equation involving derivatives of a
function y(x). The order of an ODE is the order of the highest derivative appearing in
the equation. A solution to a differential equation is a function, y(x), satisfying the
differential equation for all x on some interval.

An ODE is called linear if y(x) and its derivatives appear to at most the first power in
the equation. Linear ODEs have the useful property that a linear combination of
solutions is also a solution.

The general solution of an ODE contains one or more arbitrary constants; that is, the
most general solution is actually a family of curves determined by one or more parameters.
A first order ODE has a general solution with one arbitrary constant, a second order
ODE has a general solution with two arbitrary constants, and so on. When the constants
in the general solution are specified, we have a particular solution of the equation.

If we have the general solution to a first order ODE, we can specify a value for y(0) or,
more generally, y(a) to determine the particular solution. The specified value is called an
initial condition. For a second order equation, we need to specify two conditions in
order to determine the two constants in the general solution. Typically, we specify the
initial conditions y(0) and y′(0), or we specify a set of boundary values y(a) and y(b).

Example 4.1.1. Show that y(x) = x4

2 + 5x+ c (where c is an arbitrary constant) is the
general solution of the differential equation y′(x) = 2x3 + 5. Find the particular solution
corresponding to the initial condition y(0) = 2. Plot the family of curves corresponding to
several values of c in the general solution, and plot the particular solution in red.

We use declare to indicate the constant, then we differentiate to check that y(x) behaves
according to the given ODE:

(%i1) declare(c,constant)$

y(x):=x^4/2+5*x+c$

diff(y(x),x);

(%o3) 2*x^3+5

We see that y′(x) = 2x3 + 5, so y(x) is a solution of the differential equation. Since y(x)
has one arbitrary constant, it is the general solution of the first-order ODE. To find the
particular solution we substitute the point [0, 2] into the general solution, and solve for c:

(%i4) solve(y(0)=2,c);

(%o4) [c=2]

(%i5) y_p:subst(%[1],y(x));

(%o5) x^4/2+5*x+2

Finally, we plot the particular solution yp(x) together with the family of curves in the
general solution. We generate the family of curves using makelist to insert different
values of c into the formula for y(x). We include the point [0, 2] to illustrate that yp(x) is
the only solution passing through this point:
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(%i6) FAMILY:makelist(explicit(y(x),x,-3,3),c,-20,20)$

(%i7) wxdraw2d(

grid=true,

xrange=[-3,3],

yrange=[-5,5],

xaxis=true,

yaxis=true,

title="Particular solution as a member of a one-parameter family.",

color=grey,

FAMILY,

color=red,

line_width=2,

explicit(y_p,x,-3,3),

color=black,

point_type=7,

points([[0,2]])

);

Example 4.1.2. Show that y(x) = 5e2x is a particular solution of the differential
equation y′(x) = 2y. Write down the general solution, and use diff to show that it works.

(%i8) y(x):=5*%e^(2*x)$

diff(y(x),x);

2*y(x);

(%o9) 10*%e^(2*x)

(%o10) 10*%e^(2*x)

We see that y′(x) and 2y yield exactly the same expression, so y(x) satisfies the equation
y′(x) = 2y. We notice that the factor of 2 comes from the chain rule applied to the
exponent. The leading 5 doesn’t interfere with the differential equation at all, so we try a
general solution y(x) = c · e2x. Verifying with diff:

(%i11) y(x):=c*%e^(2*x)$

declare(c,constant)$

diff(y(x),x);

2*y(x);

(%o13) 2*c*%e^(2*x)

(%o14) 2*c*%e^(2*x)
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y(x) = c · e2x is the most general function satisfying y′(x) = 2y.

Example 4.1.3. Show that y1(x) = sinx and y2(x) = cosx are solutions of the second
order ODE y′′(x) = −y. Explain why this ODE is linear, then show that the linear
combination of solutions c1 · y1(x) + c2 · y2(x) is also a solution of the ODE.

(%i15) y_1(x):=sin(x)$

y_2(x):=cos(x)$

diff(y_1(x),x,2);

diff(y_2(x),x,2);

(%o17) -sin(x)

(%o18) -cos(x)

In each case, we see that the second derivative yields the negative of the original function,
so y1 and y2 are both solutions.

The ODE is linear because y and its derivatives appear only to the first power. A linear
combination of solutions should also be a solution:

(%i19) declare(c_1,constant,c_2,constant)$

y_gen(x):=c_1*y_1(x)+c_2*y_2(x)$

(%i21) diff(y_gen(x),x,2);

(%o21) -c_1*sin(x)-c_2*cos(x)

After two derivatives, we see that y′′gen(x) = −ygen(x), so the linear combination is also a
solution of the ODE. ygen(x) is the general solution, since it contains two arbitrary
constants.

Example 4.1.4. Apply the initial conditions y(0) = 0.3 and y′(0) = 0.5 to the general
solution in Example 4.1.3. Plot the resulting particular solution and comment on how the
initial conditions relate to the graph.

Each initial condition corresponds to an equation relating c1 and c2. In general, the
initial conditions result in a non-trivial system of equations in c1 and c2, but this example
is particularly simple because sinx vanishes at x = 0:

(%i22) EQN1:y_gen(0)=0.3;

diff(y_gen(x),x);

EQN2:subst(0,x,%)=0.5;

(%o22) c_2=0.3

(%o23) c_1*cos(x)-c_2*sin(x)

(%o24) c_1=0.5

(%i25) y_p:sublis([c_1=0.5,c_2=0.3],y_gen(x));

(%o25) 0.5*sin(x)+0.3*cos(x)

We see that yp(x) = 0.5 sinx+ 0.3 cosx is the function that satisfies the original ODE and
the initial conditions. Finally, we plot the particular solution:
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(%i26) wxdraw2d(

grid=true,

xrange=[-1,6],

yrange=[-1.4,1.4],

xaxis=true,

yaxis=true,

title="A particular solution of the ODE",

color=black,

explicit(y_p,x,-1,6)

);

Upon close inspection of the graph, we see that the initial value of the solution is about
0.3 and the initial slope is about 0.5, as we expect.

Example 4.1.5. Apply the boundary values y(1) = −1 and y(3) = 2 to the general
solution in Example 4.1.3. Plot the resulting particular solution including the boundary
values as points.

The boundary values result in a non-trivial system of equations this time, so we use
solve to find the values of c1 and c2:

(%i27) EQN1:y_gen(1)=-1;

EQN2:y_gen(3)=2;

(%o27) cos(1)*c_2+sin(1)*c_1=-1

(%o28) cos(3)*c_2+sin(3)*c_1=2

(%i29) SOLUTION:solve([EQN1,EQN2],[c_1,c_2]);

(%o29) [[c_1=-(cos(3)+2*cos(1))/(sin(1)*cos(3)-cos(1)*sin(3)),

c_2=(sin(3)+2*sin(1))/(sin(1)*cos(3)-cos(1)*sin(3))]]

The output of solve is a list containing a list, so we have to carefully dig out the
solutions and substitute back into the general expression for ygen(x). We also use float

to obtain a reasonably compact decimal approximation:

(%i30) y_p:float(sublis([c_1=rhs((%[1])[1]),c_2=rhs((%[1])[2])],y_gen(x)));

(%o30) 0.099650689051389*sin(x)-2.006012470576742*cos(x)

(%i31) wxdraw2d(

grid=true,
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xaxis=true,

yaxis=true,

xrange=[0,4],

yrange=[-3,3],

title="Particular solution from boundary values.",

color=black,

explicit(y_p,x,0,4),

color=red,

point_type=7,

points([[1,-1],[3,2]])

);
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4.2 Separable Equations

A first order ODE is called separable if we can algebraically isolate all x and y
dependence on opposite sides of the equation. A separable equation can be written in the

form f(y)dy = g(x)dx, then we simply integrate to obtain

∫
f(y) dy =

∫
g(x) dx. Each

indefinite integral results in an arbitrary constant, but we can combine the constants into
a single arbitrary constant in order to write the general solution. The general solution
might be found explicitly as a function y(x), but solutions can also be defined implicitly
as equations relating y and x.

Example 4.2.1. Find the general solution of y′(x) = 2y by separating variables.

We begin by changing to Leibniz notation:
dy

dx
= 2y. Now we can obtain the form

f(y) dy = g(x) dx by dividing both sides by y and multiplying both sides by dx:
dy

y
= 2 dx. Finally, we use wxMaxima to help with the integrals:

(%i1) integrate(1/y,y);

integrate(2,x);

(%o1) log(y)

(%o2) 2*x

To set up the resulting equation, we should note that most correct answer for the y
integral is actually ln |y|, and we need to insert an arbitrary constant, c:

(%i3) EQN:log(abs(y))=2*x+c;

declare(c,constant)$

(%o4) log(abs(y))=2*x+c

(%i5) solve(EQN,y);

(%o5) [abs(y)=%e^(c+2*x)]

The right hand side of this equation can be rewritten as ece2x, but c is an arbitrary
constant, so we can just write c · e2x, where c is a new arbitary positive constant. In
addition, |y| = y if y > 0 and |y| = −y if y < 0, so we can just write y = c · e2x where c is
allowed to be positive or negative. We check our general solution using diff:

(%i6) y_gen:c*%e^(2*x)$

diff(y_gen,x);

(%o7) 2*c*%e^(2*x)

We see that y′(x) = 2y, so we have a valid general solution.

Example 4.2.2. Use separation of variables to solve the ODE y′(x) =
cos2 x

y3 − 2
. Find the

particular solution passing through the point [1, 1]. Plot the family of curves in the
general solution together with the particular solution shown in red.

We start by transforming to the form (y3 − 2) dy = cos2 x dx, then we use wxMaxima to
perform the integrals.

95



(%i8) lhs:integrate(y^3-2,y);

rhs:integrate((cos(x))^2,x);

(%o8) y^4/4-2*y

(%o9) (sin(2*x)/2+x)/2

Now we tack on an arbitrary constant to properly express the general solution:

(%i10) gensolution:lhs=rhs+c;

declare(c,constant)$

(%o10) y^4/4-2*y=(sin(2*x)/2+x)/2+c

The general solution is defined implicitly, but we can still apply the initial condition y = 1
when x = 1 to find c for the particular solution:

(%i11) sublis([x=1,y=1],gensolution);

(%o11) -7/4=(sin(2)/2+1)/2+c

(%i12) solve(%,c);

(%o12) [c=-(sin(2)+9)/4]

(%i13) partsolution:sublis([%[1]],gensolution);

(%o13) y^4/4-2*y=(sin(2*x)/2+x)/2-(sin(2)+9)/4

Finally, we define the general solution as a function of c and plot the family of curves in
the general solution using makelist. We plot the particular solution in red.

(%i14) gensolution;

(%o14) y^4/4-2*y=(sin(2*x)/2+x)/2+c

(%i15) gsfunc(c):=’’%;

(%o15) gsfunc(c):=y^4/4-2*y=(sin(2*x)/2+x)/2+c

(%i16) FAMILY:makelist(implicit(gsfunc(c),x,-2,2,y,-2,2),c,-10,10)$

(%i17) wxdraw2d(

grid=true,

dimensions=[600,600],

xaxis=true,

yaxis=true,

title="curves in the general solution, and the particular solution",

xrange=[-2,2],

yrange=[-2,2],

color=red,

line_width=2,

implicit(partsolution,x,-2,2,y,-2,2),

color=black,

point_type=7,

points([[1,1]]),

line_width=1,

color=grey,

FAMILY

);
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4.3 wxMaxima’s Built-In ODE Solver

wxMaxima can find general solutions for some first and second order ODEs using the
built-in command ode2. We can choose to compute particular solutions manually (by
solving a system of equations), or by using the built-in commands ic1 (one initial
condition), ic2 (two initial conditions) or bc2 (two boundary values). Note that many
differential equations have no analytical solution.

Example 4.3.1. Use ode2 to find the general solution of y′(x) = 2y, then use ic1 to find
the particular solution corresponding to the initial condition [1, 3]. Check that the
particular solution satisfies the ODE and the initial condition. Finally, plot the particular
solution together with the point [1, 3].

We start by solving the ODE and applying the initial conditions:

(%i1) eqn:’diff(y,x)=2*y;

(%o1) ’diff(y,x,1)=2*y

(%i2) sol:ode2(eqn,y,x);

(%o2) y=%c*%e^(2*x)

(%i3) ic1(sol,x=1,y=3);

(%o3) y=3*%e^(2*x-2)

Now we check that the solution actually works:

(%i4) partsolution:rhs(%)$

(%i5) diff(partsolution,x);

(%o5) 6*%e^(2*x-2)

(%i6) subst(1,x,partsolution);

(%o6) 3

We see that the first derivative gives us twice the original function, so the particular
solution satisfies y′ = 2y. The solution also satisfies the initial condition because we
obtain y = 3 when we substitute x = 1. Finally, we produce the plot of the particular
solution:

(%o7) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[-5,5],

yrange=[-5,5],

title="Particular solution passing through [1,3]",

color=black,

explicit(partsolution,x,-5,5),

color=red,

point_type=7,

points([[1,3]])

);
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Example 4.3.2. Use ode2 to find the general solution of dy
dx + xy = x3. Apply the initial

conditions [1, 1] by manually solving for the arbitrary constant, then verify that ic1 gives
the same answer.

(%i8) eqn:’diff(y,x)+x*y=x^3;

(%o8) ’diff(y,x,1)+x*y=x^3

(%i9) sol:ode2(eqn,y,x);

(%o9) y=%e^(-x^2/2)*(((2*x^2-4)*%e^(x^2/2))/2+%c)

(%i10) sublis([x=1,y=1],%);

(%o10) 1=(%c-sqrt(%e))/sqrt(%e)

(%i11) solve(%,%c);

(%o11) [%c=2*sqrt(%e)]

(%i12) sublis(%,sol);

(%o12) y=%e^(-x^2/2)*(((2*x^2-4)*%e^(x^2/2))/2+2*sqrt(%e))

(%i13) ic1(sol,x=1,y=1);

(%o13) y=%e^(-x^2/2)*((x^2-2)*%e^(x^2/2)+2*sqrt(%e))

The only difference between the two particular solutions is a canceled factor of 2.

Example 4.3.3. Find the general solution of d2y
dx2 − 0.3 · dydx − 2y = 0 using ode2, then

apply the initial conditions y(0) = 1.2 and y′(0) = 0.4 using ic2. Verify that your
particular solution solves the original ODE.

(%i14) ratprint:false$

(%i15) eqn:’diff(y,x,2)-0.3*’diff(y,x)-2*y=0;

(%o15) ’diff(y,x,2)-0.3*(’diff(y,x,1))-2*y=0

(%i16) gensolution:ode2(eqn,y,x);

(%o16) y=%k1*%e^(((sqrt(809)/10+3/10)*x)/2)

+%k2*%e^(((3/10-sqrt(809)/10)*x)/2)

(%i17) partsolution:rhs(ic2(gensolution,x=0,y=1.2,’diff(y,x)=0.4));

(%o17) ((11*sqrt(809)+2427)*%e^(((sqrt(809)/10+3/10)*x)/2))/4045

-((11*sqrt(809)-2427)*%e^(((3/10-sqrt(809)/10)*x)/2))/4045

Now we check our particular solution by substituting it for y in the original differential
equation:
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(%i18) fullratsimp(diff(partsolution,x,2)-0.3*diff(partsolution,x)

-2*partsolution);

(%o18) 0

Example 4.3.4. Find the solution of d2y
dx2 = −9 · y(x) subject to the boundary conditions

y(0) = 0 and y(5) = 2. Make a plot to verify that the boundary conditions are satisfied.

We find the general solution, then use bc2 to apply the boundary conditions:

(%i19) eqn:’diff(y,x,2)=-9*y;

(%o19) ’diff(y,x,2)=-9*y

(%i20) gensoln:ode2(eqn,y,x);

(%o20) y=%k1*sin(3*x)+%k2*cos(3*x)

(%i21) bc2(gensoln,x=0,y=0,x=5,y=2);

(%o21) y=(2*sin(3*x))/sin(15)

Now we produce the plot:

(%i22) partsolution:rhs(%);

(%o22) (2*sin(3*x))/sin(15)

(%i23) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[-.5,5.5],

yrange=[-4,4],

title="A particular solution satisfying two boundary values.",

color=black,

explicit(partsolution,x,0,5),

color=red,

point_type=7,

points([[0,0],[5,2]])

);
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4.4 Direction Fields

Direction fields are a graphical tool for understanding the solutions of first order
equations of the form dy

dx = f(x, y). For an equation of this form, we immediately know
the slope of y(x) at any point (x, y) by simply plugging x and y into the right hand side.
A direction field (also called a slope field) is constructed by computing the slope at many
points in the plane. Once an initial condition is specified, the particular solution simply
follows the “flow” of the direction field. wxMaxima has a built-in command wxdrawdf

creating a direction field (with or without a particular solution).

Example 4.4.1. Plot a direction field for the ODE y′(x) = 2y, then produce a plot
showing the particular solution passing through [1, 3].

First, we plot the direction field with no particular solution:

(%i1) load(drawdf)$

(%i2) wxdrawdf(2*y,[x,-10,10],[y,-10,10]);

Any particular solution will follow the “flow” of this field (the slope of any solution
matches the slope of the line segments at any point). Now we add the particular solution
to the direction field:

(%i3) wxdrawdf(2*y,[x,-10,10],[y,-10,10],[trajectory_at,1,3]);
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Example 4.4.2. Plot a direction field for the ODE y′(x) = y(1− y). Comment on the
intervals of initial conditions (at x = 0) that produce distinctly different types of
particular solutions. In addition, there are two initial conditions that produce constant
particular solutions (equilibrium solutions). Plot an example of each type of particular
solution in addition to the equilibrium solutions.

We plot the direction field using wxdrawdf:

(%i4) wxdrawdf(y*(1-y),[x,-.5,5],[y,-1,2]);

We see that particular solutions will behave differently on the y-intervals (−∞, 0) (these
solutions run away to −∞), (0, 1) (these solutions approach y = 1 from below) and (1,∞)
(these solutions approach y = 1 from above). Initial conditions at (0, 0) and (1, 1) result
in constant particular solutions. We plot particular solutions corresponding to the initial
conditions y(0) = −0.5, y(0) = 0, y(0) = 0.5, y(0) = 1 and y(0) = 1.5:

(%i5) wxdrawdf(y*(1-y),[x,-.5,5],[y,-1,2],[trajectory_at,0,-0.5],

[trajectory_at,0,0],[trajectory_at,0,0.5],[trajectory_at,0,1],

[trajectory_at,0,1.5]);
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4.5 Euler’s Method

Euler’s Method is a numerical method for approximating a particular solution to a first
order ODE of the form dy

dx = f(x, y). To approximate a solution with initial condition
(x0, y0), we use the ODE to find the slope y′0 at (x0, y0), then we take a small step ∆x to
the right, using the slope to approximate the next y value: x1 = x0 + ∆x, and
y1 = y0 + y′0 ·∆x. This process is repeated until we obtain the desired approximation to
the particular solution – either y(c) for some particular location, or possibly y(x) for an
entire interval. The approximation becomes more accurate as the step size ∆x becomes
smaller.

Euler’s method uses the output of each step as the input for the next step, so a looping
structure is clearly appropriate. We use a for-do loop to generate a list of coordinates
(starting with the initial condition) until the desired approximation is obtained.

Example 4.5.1. Use Euler’s method to approximate y(2) for the ODE y′(x) = 2y with
initial condition (1, 3). Perform approximations by breaking the interval (1, 2) into
n = 2, 5, 10 pieces. Compare to wxMaxima’s ode2 solution. Finally, use a large enough n
to obtain an Euler approximation accurate to two decimal places.

We define the differential equation, the starting point (x0, y0) = (X,Y ), and ∆x = (2−1)
n ,

then we set up the loop to compute the next x and y values at each step: xi+1 = xi + ∆x
and yi+1 = yi + y′i ·∆x. We run the loop for n = 2, 5, 10 (only the n = 2 case is shown
below). The outputs of all three approximations are shown side-by-side below:

(%i1) DIFF(y):=2*y$

delx(n):=(2-1)/n$

(%i3) X:1$

Y:3$

n:2$

(%i6) (print(" x ....... y"),

print(float(X),"......",float(Y)),

for k:1 thru n do

(SLOPE:DIFF(Y),

NEXTY:Y+SLOPE*delx(n),

NEXTX:X+delx(n),

print(float(NEXTX),"......",float(NEXTY)),

Y:NEXTY,

X:NEXTX)

);
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x .......y x .......y x .......y

1.0......3.0 1.0......3.0 1.0......3.0

1.5......6.0 1.2......4.2 1.1......3.6

2.0......12.0 1.4......5.88 1.2......4.32

1.6......8.231999 1.3......5.184

1.8......11.5248 1.4......6.2208

2.0......16.13472 1.5......7.46496

1.6......8.957952

1.7......10.749542

1.8......12.899450

1.9......15.479341

2.0......18.575209

We obtain approximations of y(2) ≈ 12.0 (n = 2), y(2) ≈ 16.1 (n = 5) and y(2) ≈ 18.6
(n = 10).

Finally, we compute the ode2 approximation:

(%i7) EQN:’diff(y,x)=2*y$

SOLN:ode2(EQN,y,x);

(%o8) y=%c*%e^(2*x)

(%i9) PARTSOLN:ic1(SOLN,x=1,y=3);

(%o9) y=3*%e^(2*x-2)

(%i10) float(subst(2,x,PARTSOLN));

(%o10) y=22.16716829679195

With y(2) ≈ 22.2, we see that the n = 2, n = 5 and n = 10 Euler approximations are not
very accurate (though they are getting closer to the right answer as n increases). We can
improve the approximation by simply increasing n. We modify the do-loop with an
if-else statement to print only the final step for an approximation of y(2), and we use
n = 9999:

(%i11) kill(all)$

(%i1) DIFF(y):=2*y$

delx(n):=(2-1)/n$

(%i3) X:1$

Y:3$

n:9999$

(%i6) (for k:1 thru n do

(SLOPE:DIFF(Y),

NEXTY:Y+SLOPE*delx(n),

NEXTX:X+delx(n),

if(k=n) then print("y(2)=",float(NEXTY)),

Y:NEXTY,

X:NEXTX)

);

y(2)=22.1627354541832

(%o6) done
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The n = 9999 approximation agrees to two decimal places, but it takes an average
computer a very long time to compute. Euler’s method is a relatively weak
approximation scheme, but it’s instructive nonetheless.

Example 4.5.2. Use Euler’s method to plot an approximate solution to y′(x) = xy sin y
on (0, 5) for the initial condition (0, 1.5). Apply the approximation using n = 2, n = 10,
n = 20 and n = 100.

To plot results from a do-loop, we use append to tack on a new point to a list of points
with each iteration. The code is shown below only for n = 2, but all four approximations
are plotted. Note that we use float to obtain decimal approximations for the points in
order to reduce the demands on our machine (without this improvement in the code,
wxMaxima “hangs” on the n = 100 case):

(%i7) kill(all)$

DIFF(x,y):=x*y*sin(x)$

delx(n):=(5-0)/n$

X:0$

Y:1.5$

n:2$

POINTS:[[X,Y]]$

(%i8) (for k:1 thru n do

(SLOPE:DIFF(X,Y),

NEXTY:float(Y+SLOPE*delx(n)),

NEXTX:float(X+delx(n)),

POINTS: append(POINTS,[[NEXTX,NEXTY]]),

Y:NEXTY,

X:NEXTX)

);

(%o8) done

(%i10) wxdraw2d(

xrange=[-0.1,5.1],

yrange=[-40,40],

title="n=2 Euler approximation",

points_joined=true,

color=black,

points(POINTS)

);
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As a check on our approximation, we use wxdrawdf to view the particular solution within
a direction field:

(%i11) load(drawdf)$

(%i12) wxdrawdf(x*y*sin(x),[x,-.5,5.1],[y,-40,40],[trajectory_at,0,1.5]);
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4.6 Module 4 Exercises

1. Show that y(x) = c · ex2/2 + 3 is the general solution of the ODE dy
dx = xy − 3x. Use

makelist to generate 20 members of the family of solutions satisfying the ODE.
Plot the family of solutions in grey together with the particular solution satisfying
y(0) = 5 in red.

2. Show that y1(x) = sin (ωx) and y2(x) = cos (ωx) are both solutions of the second
order ODE y′′(x) = −ω2y(x) (use %omega in wxMaxima). What is the general
solution for the ODE? Show that y(x) = A · cos(ωx+ φ) is an alternative general
solution (with arbitrary constants A and φ).

3. Find the particular solution of y′′(x) = −5y(x) subject to the boundary values
y(0) = 2 and y(3.1) = −0.2. Rather than using bc2, use subst and solve to
“manually” find the particular solution in two different forms using the different
expressions of the general solution discussed in the previous Exercise. Use
trigexpand to show that the two particular solutions are equivalent. Finally, plot
the particular solution including the points given by the boundary values.

4. Show that c1e
kx + c2e

−kx is the general solution of y′′(x) = k2 · y(x). The general
solution looks very much like a pair of “special” functions – what are they? Show
that each of these special functions also satisfies the ODE, then write down the
general solution in terms of these functions.

5. Use separation of variables to find the general solution of y′(x) = −y/x. Make a
plot of the family of curves in the general solution by using makelist.

6. Use separation of variables to find the general solution of y′(x) = +y/x. Make a
plot of the family of curves in the general solution by using makelist.

7. Use separation of variables to find the particular solution of dy
dx = x2

√
x2+3

(1−y2)3/2 subject

to the initial condition y(3) = 0.5. Plot the particular solution, showing that it
passes through (3, 0.5).

8. Use ode2 to find the general solution of y′(x) = − 1
2y · tanx. Plot the family of

solutions for 20 values of %c in the general solution.

9. Use ode2 to find the general solution of y′(x) = − sin y · cosx. Plot the family of
solutions for 20 values of %c in the general solution.

10. Plot a direction field for the ODE y′(x) = sin2 x
y , including a plot of the particular

solution passing through (0, 1).

11. Use Euler’s method with n = 100 to plot the particular solution in the previous
exercise on [0, 5].

12. Plot the direction field for y′(x) = −xy , including particular solutions passing

through (0, 1), (0, 2) and (0, 3).

13. For the ODE in the previous exercise, use Euler’s method with n = 100 to plot the
particular solution passing through (0, 3).
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14. A classic problem in differential equations is to find a set of orthogonal trajectories
to a given family of curves. The orthogonal trajectories are curves that intersect the
given family at right angles at every point. Consider the family of curves y = −Cx .
To find its orthogonal trajectories, we must first find the slope at any point, for any
value of C; that is, we compute dy

dx in terms of C. In this case, the derivative is

trivial: dy
dx = C

x2 .

To intersect at right angles, the orthogonal set must have the negative reciprocal of
slope at each point. In other words, the orthogonal trajectories satisfy a differential

equation dy
dx = −x

2

C (note that C = 0 must be excluded at this point). To solve this
differential equation, substitute the expression for C in terms of x and y, then
separate variables and integrate (alternatively, you can use ode2). You will obtain a
new family of curves (with a new arbitrary constant D) that should intersect the
original family at right angles. Finally, use makelist to generate plots of the two
families of curves for C = −10,−9, . . . 10 (excluding C = 0) and D = −10,−9, . . . 10

15. Logistic growth occurs when a population grows nearly exponentially when it is
small, then levels off to a “carrying capacity” when it becomes sufficiently large.
The model for logistic growth is a differential equation dN

dt = kN · (L−N), where N
is the population size, and L is the carrying capacity. We can determine by
inspection that the growth is nearly exponential when N is small: dN

dt ≈ (kL)N ,
and the growth rate approaches zero as N → L. Additionally, we see that the
growth rate becomes negative if N > L; in other words, the population will become
smaller if it exceeds the carrying capacity of the environment.

Suppose that a rabbit population grows logistically with k = 0.312 and L = 1000.
Assume that the time units are weeks.

(a) Plot the population as a function of time using the initial conditions N(0) = 2
and N(0) = 5.

(b) How long does it take each population to reach 80% of the carrying capacity?

(c) Suppose the rabbits have an overpopulation problem: N(0) = 2000. Plot the
population as a function of time. How long does it take before the population
shrinks to 1200 rabbits?

(d) Determine how the population behaves if N(0) = 1000.

16. Radioactive decay is governed by probabilistic physics – each atom of an unstable
isotope carries exactly the same probability of decay per second. For example, if an
isotope has a decay probability of k = .001 per atom per second, and we have a
collection of 2000 atoms, we expect 2 decays in the next second. This behavior can
be modeled with a first order differential equation: dN

dt = −kN ; that is, the decay
rate (atoms per second) is proportional to the number of atoms. The solution to
this ODE is guessable – write it down, making sure to properly include an arbitrary
constant. Now plug in t = 0, and interpret the arbitrary constant.

Carbon-14 atoms have a probability of decay per atom per year of about
k ≈ .000121.

(a) Starting with N(0) = 1023, produce a plot of N(t) for a period of 20,000 years.
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(b) Compute the percent of original atoms remaining after 10,000 years.

(c) Compute the time for half the atoms to decay (this is called the half-life for
Carbon-14).

Note: C-14 is used in radiometric dating of archaeological remains. The actual
technique requires knowledge of the percent of carbon in the form of C-14 at the
time of an organism’s death. This percent is relatively stable over time, as C-14 is
produced by a predictable process in the Earth’s upper atmosphere. When an
organism is alive, it incorporates carbon from its environment, including this same
fraction of C-14. When an organism dies, the fraction of C-14 decreases as C-14
decays to N-14, while the “ordinary” carbon C-12 is stable. The fraction of C-14
follows the same decay curve as the amount of C-14 to a very good approximation
because C-14 only occurs in trace amounts (about one part per trillion).

17. If the acceleration of an object is constant, we can describe its behavior with a
second order differential equation, x′′(t) = a, where a is the constant acceleration.
Solve this ODE with the initial conditions x(0) = x0 and v(0) = v0 to obtain the
standard constant-acceleration equations of motion x(t) and v(t).

18. Find the equations of motion for an object with acceleration a(t) = te−t. Use the
standard initial conditions from the previous Exercise.

109



Module 5

Parametric and Polar Curves

5.1 Parametric Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 Calculus Applications for Parametric Curves . . . . . . . . . . . . . . . . . . . . . 115

5.2.1 Slope of a Parametric Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2.2 Arc Length of a Parametric Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3.1 Polar Coordinates and Coordinate Transformations . . . . . . . . . . . . . . . . . . . 120

5.3.2 Plotting Curves in Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.4 Calculus Applications for Polar Curves . . . . . . . . . . . . . . . . . . . . . . . . 127

5.4.1 Slope in Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.4.2 Arc Length of a Polar Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4.3 Area in Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5 Module 5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Key Commands Included in This Module

makelist trigsimp integrate

parametric diff quad_qag

eliminate float polar

solve find_root subst

dimensions ratprint:false

110



5.1 Parametric Equations

We define a curve parametrically by specifying the x and y coordinates individually as
functions of a parameter, usually t. The parametric equations of the curve are

x(t) = f(t) and y(t) = g(t)

When we choose a particular value of t, an ordered pair (x, y) is determined by the
equations. If we evaluate the equations for a range of t values on the interval [a, b], the
result is a curve in the plane starting at (x(a), y(a)) and ending at (x(b), y(b)). The curve
has direction corresponding to the order in which the points are plotted as t increases.

It is often possible to algebraically combine the parametric equations into a single
equation relating only x and y. This process can occasionally give us more insight into
the curve, but the directionality is lost in the process.

Example 5.1.1. Evaluate the parametric equations x(t) = t and y(t) = 2t− 3 at
t = 0, 0.1, 0.2, . . . 2. Make a plot showing the discrete points together with the continuous
parametric curve traced out for the t interval [−1, 3]. Finally, algebraically combine the
parametric equations to obtain an equation relating only x and y, and verify that this
equation agrees with the plot.

We define the parametric equations for x and y, then use makelist to make the set of
discrete points. Finally we produce the plot including the continuous parametric curve:

(%i1) x(t):=t$

y(t):=2*t-3$

(%i3) POINTS:makelist([x(0.1*n),y(0.1*n)],n,0,20);

(%o3) [[0,-3],[0.1,-2.8],[0.2,-2.6],[0.3,-2.4],[0.4,-2.2],

[0.5,-2.0],[0.6,-1.8],[0.7,-1.6],[0.8,-1.4],[0.9,-1.2],

[1.0,-1.0],[1.1,-0.8],[1.2,-0.6],[1.3,-0.4],[1.4,-0.2],

[1.5,0.0],[1.6,0.2],[1.7,0.4],[1.8,0.6],[1.9,0.8],[2.0,1.0]]

(%i4) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

title="Points on a parametric curve.",

color=dark_grey,

parametric(x(t),y(t),t,-1,3),

color=red,

point_type=7,

points(POINTS)

);
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The implicit directionality of this plot points in the direction of increasing t. We see from
the list of discrete points that the directionality is “up and to the right” along the curve.
Finally, we algebraically “eliminate the parameter” to obtain an equation relating only x
and y. We redefine the parametric functions as equations in wxMaxima, then we apply
eliminate to the system to eliminate t. Note that the output of eliminate is implicitly
set equal to zero – we use solve to state the resulting equation in a more standard form.

(%i5) Xeqn:x=x(t)$

Yeqn:y=y(t)$

eliminate([Xeqn,Yeqn],[t]);

(%o7) [-y+2*x-3]

(%i8) solve(%[1]=0,y);

(%o8) [y=2*x-3]

We obtain the equation of a line with slope 2 and y-intercept -3, as we observe in the plot.

Example 5.1.2. Plot the parametric curve defined by x(t) = 3 cos t and y(t) = 3 sin t on
the t-interval [0, 2π]. Explicitly label the points at t = 0, π2 , π,

3π
2 and comment on the

directionality of the curve. Finally, express the equation of the curve entirely in terms of
x and y.

(%i9) x(t):=3*cos(t)$

y(t):=3*sin(t)$

(%i11) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[-4,4],

yrange=[-4,4],

dimensions=[600,600],

nticks=600,

color=black,

parametric(x(t),y(t),t,0,2*%pi),

color=red,

point_type=7,

points([[x(0),y(0)],[x(%pi/2),y(%pi/2)],[x(%pi),y(%pi)],[x(3*%pi/2),y(3*%pi/2)]]),

color=black,

label(["t=0",3.5,0]),
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label(["t=pi/2",0,3.3]),

label(["t=pi",-3.5,0]),

label(["t=3pi/2",0,-3.3])

);

We see that the direction of increasing t is counterclockwise. Finally, we eliminate the
parameter to obtain a familiar equation for this curve. Note that eliminate won’t work
in this case, because it is designed only for polynomial equations. We proceed by
exploiting a trig identity:

(%i12) Xeqn:x=x(t);

Yeqn:y=y(t);

(%o12) x=3*cos(t)

(%o13) y=3*sin(t)

(%i14) Xeqn^2+Yeqn^2;

(%o14) y^2+x^2=9*sin(t)^2+9*cos(t)^2

(%i15) trigsimp(%);

(%o15) y^2+x^2=9

We recognize the equation of a circle of radius 3 centered at the origin.

Example 5.1.3. Plot the parametric curve defined by x(t) = cos(7t) and y(t) = sin(3t).
Choose a t interval sufficiently large to close the curve.

As t goes from 0 to 2π, x(t) completes 7 periods and y(t) completes 3 periods. At t = 2π,
the coordinates reach their original starting point, so we only need to plot the curve on
[0, 2π] to get the whole picture. This type of curve is known as a Lissajous figure:

(%i21) wxdraw2d(

grid=true,

xaxis=true,
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yaxis=true,

title="A Lissajous curve.",

color=black,

nticks=600,

dimensions=[600,600],

parametric(cos(7*t),sin(3*t),t,0,2*%pi)

);

In the Exercises, we use an animation to explore the directionality of this curve.
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5.2 Calculus Applications for Parametric Curves

5.2.1 Slope of a Parametric Curve

When a curve is defined parametrically, we can find the slope, dy
dx at t = a by using the

t-derivatives of x and y:

dy

dx
=

dy/dt

dx/dt
=
y′(a)

x′(a)

We can use the the slope to plot a tangent line to a parametric curve at any desired point.

Example 5.2.1. A parametric curve is defined by x(t) = t sin t and y(t) = t− 3 on the
t-interval [0, 2π]. Compute the slope and the equation of the tangent line at t = 2.5 and
plot the curve together with the tangent line.

We define the slope as a ratio of y′(t) and x′(t), compute the slope at t = 2.5, and
compute the equation of the tangent line by plugging (x(2.5), y(2.5)) into the point-slope
formula. We use float to obtain decimal approximations because wxdraw2d struggles
with the exact expressions:

(%i1) x(t):=t*sin(t)$

y(t):=t-3$

(%i3) diff(x(t),t);

(%o3) sin(t)+t*cos(t)

(%i4) x_prime(t):=’’(%);

(%o4) x_prime(t):=sin(t)+t*cos(t)

(%i5) diff(y(t),t);

(%o5) 1

(%i6) y_prime(t):=’’(%);

(%o6) y_prime(t):=1

(%i7) y_prime(t)/x_prime(t);

(%o7) 1/(sin(t)+t*cos(t))

(%i8) SLOPE(t):=’’(%);

(%o8) SLOPE(t):=1/(sin(t)+t*cos(t))

(%i9) slope:float(SLOPE(2.5));

(%o9) -0.71205449419157

(%i10) tanline:float(slope*(x-x(2.5))+y(2.5));

(%o10) -0.71205449419157*(x-1.496180360259891)-0.5

(%i11) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[-5,5],

yrange=[-5,5],

title="A parametric curve with a tangent line.",

color=dark_grey,
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parametric(x(t),y(t),t,0,2*%pi),

color=red,

explicit(tanline,x,-5,15),

color=black,

point_type=7,

points([[x(2.5),y(2.5)]]),

label(["(x(2.5),y(2.5))",2,.5])

);

Example 5.2.2. The equations x(t) = t− 1.5 sin t and y(t) = 1− 1.5 cos t define a prolate
cycloid. For the t interval [1, 10], find all the values of t for which a tangent line has zero
slope or undefined slope. Finally, plot the prolate cycloid together with the tangent lines.

We compute the slope as a function of t and make a preliminary sketch of the curve to
aid our search for the relevant points:

(%i1) x(t):=t-1.5*sin(t)$

y(t):=1-1.5*cos(t)$

diff(x(t),t)$

x_prime(t):=’’(%);

diff(y(t),t)$

y_prime(t):=’’(%);

(%o4) x_prime(t):=1-1.5*cos(t)

(%o6) y_prime(t):=1.5*sin(t)

(%i7) y_prime(t)/x_prime(t)$

SLOPE(t):=’’(%);

(%o8) SLOPE(t):=(1.5*sin(t))/(1-1.5*cos(t))

(%i9) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

title="Sketch of a prolate cycloid.",

color=black,

parametric(x(t),y(t),t,1,10)

);
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Now we locate the values of t for which the numerator and denominator of SLOPE vanish.
The numerator, 1.5 sin t vanishes at t = π, t = 2π and t = 3π. We use find_root to
locate the values of t for which the denominator vanishes. The vertical tangents occur
just before and after t = 2π (the location of the horizontal tangent) so we use the
intervals [4, 2π] and [2π, 8]:

(%i10) find_root(denom(SLOPE(t)),t,4,2*%pi);

(%o10) 5.442116636611656

(%i11) find_root(denom(SLOPE(t)),t,2*%pi,8);

(%o11) 7.124253977747517

We have vertical tangents at t ≈ 5.44 and t ≈ 7.12. Finally, we produce a plot of the
prolate cycloid together with the tangent lines (recall that the vertical tangent lines must
be defined parametrically):

(%i12) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

yrange=[-2,3],

xrange=[-1,11],

title="Prolate cycloid with horizontal and vertical tangents.",

color=dark_grey,

line_width=2,

parametric(x(t),y(t),t,1,10),

line_width=1,

line_type=dots,

color=red,

explicit(y(%pi),x,-1,11),

explicit(y(2*%pi),x,-1,11),

explicit(y(3*%pi),x,-1,11),

parametric(x(5.442),t,t,-2,3),

parametric(x(7.124),t,t,-2,3)

);
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5.2.2 Arc Length of a Parametric Curve

We approach the arc length problem by visualizing a small element of arc on the curve
defined by the parametric equations x(t) and y(t):

When we zoom in on ds, we see that it can be decomposed into x and y components, and
we apply the pythagorean theorem to obtain ds =

√
(dx)2 + (dy)2. This time, we proceed

by factoring dt out of the square root to obtain ds =

√(
dx
dt

)2
+
(

dy
dt

)2
dt.

Finally, we set up arc length as an integral for the t-interval [a, b]:

S =

∫
ds =

∫ b

a

√
(x′(t))2 + (y′(t))2 dt

Example 5.2.3. Compute the arc length of the ellipse defined by the parametric
equations x(t) = 3 cos t and y(t) = 1.5 sin t on the t-interval [0, 2π].

We define x(t) and y(t), apply diff and attempt the integral:

(%i13) x(t):=3*cos(t)$

y(t):=1.5*sin(t)$

(%i15) diff(x(t),t)$

x_prime:%;

(%o16) -3*sin(t)
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(%i17) diff(y(t),t)$

y_prime:%;

(%o18) 1.5*cos(t)

(%i19) ratprint:false$

(%i20) integrate(sqrt(x_prime^2+y_prime^2),t,0,2*%pi);

(%o20)

∫ 2π

0

√
9 sin (t)

2
+ 2.25 cos (t)

2
dt

wxMaxima fails to compute the integral, so we use quad_qag instead.

(%i21) quad_qag(sqrt(x_prime^2+y_prime^2),t,0,2*%pi,1);

(%o21) [14.53267233082058,1.0286549418261626*10^-7,165,0]

We obtain an arc length of S ≈ 14.5. Finally, we produce a plot of the ellipse to make
sure our answer is reasonable:

(%i22) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

title="ellipse with arc length ~14.5",

color=black,

parametric(x(t),y(t),t,0,2*%pi)

);
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5.3 Polar Coordinates

5.3.1 Polar Coordinates and Coordinate Transformations

To define a point in polar coordinates, we specify a distance from the origin, r, and a
direction, θ (measured in radians counterclockwise from the positive x axis). The point is
then given by an ordered pair (r, θ). We can specify a point in polar coordinates in an
infinte number of ways by tacking on multiples of 2π to θ, and we can even use negative
values of r or θ.

We can transform between polar and rectangular coordinates using trigonometry:

Polar to Rectangular: x = r · cos θ y = r · sin θ

Rectangular to Polar: r =
√
x2 + y2 θ = tan−1 yx

Note that the inverse tangent only yields values of θ on the restricted domain
[
−π2 ,

π
2

]
, so

we must carefully adjust the answer when θ is outside this domain.

Example 5.3.1. Convert the following polar ordered pairs to rectangular coordinates,
then plot the points:

a.
(
3, π4

)
b.

(
2,− 2π

3

)
c.

(
−1, π6

)
d. (1, 5π)

We define the “polar to rectangular” conversions as functions, then we assign a name to
each rectangular point:

(%i1) x(r,t):=r*cos(t)$

y(r,t):=r*sin(t)$

pointA:[x(3,%pi/4),y(3,%pi/4)];

pointB:[x(2,-2*%pi/3),y(2,-2*%pi/3)];

pointC:[x(-1,%pi/6),y(-1,%pi/6)];

pointD:[x(1,5*%pi),y(1,5*%pi)];

(%o3) [3/sqrt(2),3/sqrt(2)]

(%o4) [-1,-sqrt(3)]

(%o5) [-sqrt(3)/2,-1/2]

(%o6) [-1,0]

Finally, we plot the four points using the rectangular coordinates. We include grey lines
at constant values of θ to make each angle and radius easier to visualize (the lines are
defined parametrically in wxdraw2d).

(%i7) wxdraw2d(

grid=true,

dimensions=[600,600],

xrange=[-2.2,2.2],

yrange=[-2.2,2.2],

xaxis=true,
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yaxis=true,

color=dark_grey,

line_width=2,

parametric(cos(%pi/4)*t,sin(%pi/4)*t,t,0,3),

parametric(-t*cos(%pi/3),-sin(%pi/3)*t,t,0,2),

parametric(-cos(%pi/6)*t,-sin(%pi/6)*t,t,0,1),

parametric(t,0,t,-1,0),

color=red,

point_type=7,

points([pointA,pointB,pointC,pointD]),

color=black,

label(["A", pointA[1]-.1,pointA[2]]),

label(["B", pointB[1]-.1,pointB[2]]),

label(["C", pointC[1]-.1,pointC[2]]),

label(["D", pointD[1],pointD[2]+.1])

);

The negative value of θ in part b. means that the angle is measured clockwise from the
positive x-axis. The negative value of r in part c. means that the point is located in the
opposite direction of θ. Finally, the angle 5π in part d. is equivalent to π since multiples
of 2π make no difference in the direction.

Example 5.3.2. Use decimal approximations to express the rectangular point [2, 3] in
polar coordinates in four different ways: using a positive/negative r and a
positive/negative θ. Verify in each case that the rectangular coordinates are correct.

We start with the positive r, positive θ case:

(%i8) kill(all)$
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(%i1) x(r,t):=r*cos(t)$

y(r,t):=r*sin(t)$

(%i3) R:float(sqrt(2^2+3^2));

T:float(atan(3/2));

(%o3) 3.605551275463989

(%o4) 0.98279372324733

(%i5) POINT:[x(R,T),y(R,T)];

(%o5) [2.0,3.0]

For the positive r, negative θ case, we simply rotate clockwise by 2π:

(%i9) R:float(sqrt(2^2+3^2));

T:float(atan(3/2)-2*%pi);

(%o9) 3.605551275463989

(%o10) -5.300391583932258

(%i11) POINT:[x(R,T),y(R,T)];

(%o11) [2.0,3.0]

For the negative r, positive θ case, we have to aim in the opposite direction of the original
angle by adding π:

(%i12) R:-float(sqrt(2^2+3^2));

T:float(atan(3/2)+%pi);

(%o12) -3.605551275463989

(%o13) 4.124386376837122

(%i14) POINT:[x(R,T),y(R,T)];

(%o14) [2.000000000000001,2.999999999999999]

Finally, for the negative r, negative θ case, we aim in the opposite direction of the
original angle by subtracting π:

(%i15) R:-float(sqrt(2^2+3^2));

T:float(atan(3/2)-%pi);

(%o15) -3.605551275463989

(%o16) -2.158798930342464

(%i17) POINT:[x(R,T),y(R,T)];

(%o17) [1.999999999999999,3.0]

In each case, there are infinitely many correct answers corresponding to additional
rotations by an integer multiple of 2π.
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5.3.2 Plotting Curves in Polar Coordinates

An equation relating r and θ defines a polar curve. wxMaxima can quickly plot polar
curves if r is defined explicitly in terms of θ.

Example 5.3.3. Plot the polar equation r = 2, using dimensions to force a square
aspect ratio. Convert the equation to its rectangular form to verify what you see in the
plot.

(%i1) wxdraw2d(

grid=true,

dimensions=[600,600],

nticks=1000,

xaxis=true,

yaxis=true,

xrange=[-2.5,2.5],

yrange=[-2.5,2.5],

title="The polar equation r=2",

color=black,

polar(2,t,0,2*%pi)

);

Now we convert the equation to rectangular form:

(%i2) x(t):=2*cos(t)$

y(t):=2*sin(t)$

EQN:X^2+Y^2=(x(t))^2+(y(t))^2;

(%o4) Y^2+X^2=4*sin(t)^2+4*cos(t)^2

(%i5) trigsimp(%);

(%o5) Y^2+X^2=4

We recognize the equation for a circle of radius 2 centered at the origin.

123



Example 5.3.4. Plot the polar equation r = 0.5 · θ for the θ interval [0, 20]. Plot several
points explicitly on the graph to illustrate how the points are generated from the polar
equation.

(%i6) R(t):=0.5*t$

(%i7) x(r,t):=r*cos(t)$

y(r,t):=r*sin(t)$

(%i9) POINTS:[[x(R(%pi/2),(%pi/2)),y(R(%pi/2),(%pi/2))],

[x(R(%pi),(%pi)),y(R(%pi),(%pi))],

[x(R(2*%pi),(2*%pi)),y(R(2*%pi),(2*%pi))],

[x(R(17*%pi/4),(17*%pi/4)),y(R(17*%pi/4),(17*%pi/4))]]$

(%i10) wxdraw2d(

grid=true,

dimensions=[600,600],

xrange=[-8,8],

yrange=[-8,8],

nticks=1000,

xaxis=true,

yaxis=true,

title="r(t)=0.5*t",

color=black,

polar(R(t),t,0,20),

color=red,

point_type=7,

points(POINTS)

);

The four labeled points help us to understand how the curve is generated from each value
of θ. For example, when θ = 2π, r(2π) = 0.5 · 2π ≈ 3.14, so we see a point obtained by
“aiming” in the direction of θ = 2π at a distance slightly more than 3 units from the
origin.
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Example 5.3.5. The polar function r(t) = 3 cos (5θ) is an example of a rose. Plot r(t)
on the interval [0, π] along with the five points at the tips of the “petals”.

We start with a quick sketch:

(%i1) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

color=black,

nticks=1000,

polar(3*cos(5*t),t,0,%pi)

);

The tips of the petals correspond to the maximum magnitude of r, which occurs when the
cosine function takes on its maximum value of 1 or its minimum value of -1. We solve for
the relevant angles by solving 5θ = n · π for n = 0, 1, 2, . . . , 4. Note that n = 5 yields
θ = π which gives us r = −3: this is exactly the same point given by n = 0 where r = 3,
so we exclude the n=5 case from the list.

We set up makelist with the polar to rectangular conversions at the five special angles,
then we plot the rose in a square window together with the special points:

(%i2) x(r,t):=r*cos(t)$

y(r,t):=r*sin(t)$

R(t):=3*cos(5*t)$

(%i5) POINTS:makelist(float([x(R(n*%pi/5),n*%pi/5),y(R(n*%pi/5),n*%pi/5)]),n,0,4)$

(%i6) wxdraw2d(

grid=true,

dimensions=[600,600],

xaxis=true,

yaxis=true,

xrange=[-3,3],

yrange=[-3,3],

nticks=1000,

title="the rose curve r(t)=3cos(5t)",

color=black,

polar(R(t),t,0,%pi),
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color=red,

point_type=7,

points(POINTS)

);
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5.4 Calculus Applications for Polar Curves

5.4.1 Slope in Polar Coordinates

Given a polar equation for a curve, r(θ), we can compute the slope at any point by
substituting the formulas x = r cos θ and y = r sin θ into dy

dx . We apply the product rule,
since x and y depend on both r and θ:

dy

dx
=

dy
dθ
dx
dθ

=
d
dθ (r sin θ)
d
dθ (r cos θ)

=
dr
dθ · sin θ + r · cos θ
dr
dθ · cos θ − r · sin θ

Example 5.4.1. For the polar curve r(θ) = cos2 θ + sin3 (2θ), compute the slope at
θ = π

4 . Plot the curve on the θ-interval [ 0, 2π] including the tangent line at θ = π
4 .

We define r(θ) and plug into the slope formula:

(%i1) r(t):=(cos(t))^2+(sin(2*t))^3$

(%i2) DERIV:(diff(r(t),t)*sin(t)+r(t)*cos(t))/

(diff(r(t),t)*cos(t)-r(t)*sin(t));

(%o2)
cos(t) (sin(2 t)3+cos(t)2)+sin(t) (6 cos(2 t) sin(2 t)2−2 cos(t) sin(t))
cos(t) (6 cos(2 t) sin(2 t)2−2 cos(t) sin(t))−sin(t) (sin(2 t)3+cos(t)2)

—

(%i3) SLOPE:subst(%pi/4,t,DERIV);

(%o3) -1/5

We find a slope of − 1
5 at θ = π

4 .

In order to plot the tangent line, we need to work in rectangular coordinates. We find the
point of tangency and plug into the point-slope formula to obtain an equation for the
tangent line. Finally, we produce a plot:

(%i4) x(t):=r(t)*cos(t)$

y(t):=r(t)*sin(t)$

TANLINE:(x-x(%pi/4))*SLOPE+y(%pi/4)$

(%i5) wxdraw2d(

grid=true,

dimensions=[600,600],

nticks=1000,

xaxis=true,

yaxis=true,

xrange=[-1.5,1.5],

yrange=[-1.5,1.5],

title="r(t) with a tangent line at t=pi/4",

color=black,

polar(r(t),t,0,2*%pi),

color=red,

explicit(TANLINE,x,-2,2)

);
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5.4.2 Arc Length of a Polar Curve

Once again, we approach the arc length problem by visualizing a small arc element on a
curve. The curve has polar equation r(θ), and ds is swept out through a small angle dθ.
This time, it is most useful to decompose the arc-element into tangential and radial
components. The tangential component of ds is given by r · dθ, and the radial component
is simply dr:

We apply the pythagorean theorem to express ds in terms of dθ:

ds =
√

(rdθ)2 + (dr)2 =

√
r2 +

(
dr

dθ

)2

· dθ

Finally, the arc length on the θ interval [θ1, θ2] is given by:

S =

∫
ds =

∫ θ2

θ1

√
r2 +

(
dr

dθ

)2

· dθ
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Example 5.4.2. Find a θ interval that traces the polar curve
r(θ) = 5 cos2 (3θ)− 2 sin (0.75θ) exactly once. Compute the arc length of r(θ) on this
interval and produce a plot.

We start at θ = 0 and compute a θ interval over which each function completes an integer
number of periods. The first term has a period of π

3 , while the second term has a period
of 8π

3 . Thus, each function will return to its initial state after 8π
3 . In order for the curve

to be complete, each function must return to its initial state not just at the same angle
but in the intial direction – a multiple of 2π. This will happen after three intervals of 8π

3 ,
so [0, 8π] is the interval required to trace the curve exactly once.

We apply quad_qag since wxMaxima hangs on integrate:

(%i1) r(t):=5*(cos(3*t))^2-2*sin(0.75*t)$

DERIV:diff(r(t),t)$

quad_qag(sqrt((r(t))^2+DERIV^2),t,0,8*%pi,2);

(%o3) [260.3422173127943,2.5463420336505348*10^-6,7497,0]

(%i4) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

dimensions=[600,600],

nticks=1000,

xrange=[-7,7],

yrange=[-7,7],

title="plot of r(t), arc length ~ 260",

color=black,

polar(r(t),t,0,8*%pi)

);
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5.4.3 Area in Polar Coordinates

To compute the area bounded by a polar curve, we visualize a small area element dA
given by a thin slice with angle dθ and radius r(θ).

dA is nearly equal to a sector of a circle, so we can find its area using basic geometry: the
ratio of dθ to 2π is equal to the ratio of dA to the entire area of a circle with the same
radius:

dA

πr2
=

dθ

2π
=⇒ dA =

1

2
r2dθ

Finally, we use an integral to compute the area bounded on [θ1, θ2]:

A =

∫
dA =

1

2

∫ θ2

θ1

r2dθ

Example 5.4.3. Compute the area bounded by one of the large “petals” of
r(θ) = cos2 θ + sin3 (2θ) (the curve from Example 5.4.1). *Plot r(θ) on [0, 2π], and shade
the calculated area.

We begin by determining the θ interval that bounds the petal. We can see by inspection
that r(t) = 0 at ±π2 , but there should be other solutions between −π2 and 0, where the
sine term is negative. We want the root closest to 0 – our petal is traced out from this
zero to the next zero at π

2

To aid our search, we make a quick r − t plot:

(%i1) r(t):=(cos(t))^2+(sin(2*t))^3$

(%i2) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[-2,2],

yrange=[-2,2],

color=black,

explicit(r(t),t,-%pi/2,%pi/2)

);
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We see a root somewhere near −0.5, and we use find_root to get an approximation:

(%i3) find_root(r(t),t,-.7,-.3);

(%o3) -0.55623041931838

The interval defining the petal is [−0.556, π2 ]. Now we compute the area bounded by the
petal:

(%i4) float(integrate(0.5*(r(t))^2,t,-0.556,%pi/2));

(%o4) 1.026989023118201

We obtain an area of about 1 unit.

Finally, we produce the shaded plot of r(t). wxMaxima does not have an equivalent to
filled_func in polar coordinates. Instead, we use makelist to fill the region with many
closely spaced radial line segments.

(%i5) x(t):=r(t)*cos(t)$

y(t):=r(t)*sin(t)$

RADIUS(t):=(y(t)/x(t))*(x-x(t))+y(t)$

RADII:makelist(explicit(RADIUS(0.01*n),x,0,x(0.01*n)),n,-55,157)$

(%i6) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

dimensions=[600,600],

nticks=600,

title="A large petal of r(t)",

line_width=2,

color=grey,

RADII,

color=black,

polar(r(t),t,0,2*%pi)

);
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We can estimate from the shaded plot that A ≈ 1 is about right – the area of the petal
looks about the same as a 1 unit by 1 unit rectangle in the plot.
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5.5 Module 5 Exercises

1. For the parametric equations x(t) = t2 and y(t) = t− 2, generate a set of 21 points
on [0, 2] using makelist. Plot the points together with the continuous parametric
curve, and refer to the list of points to determine the directionality of the curve.

2. For the parametric equations x(t) = 3 cos (2t), y(t) = 5 sin (2t), determine the
minimum t interval (starting from zero) to close the curve. Plot the curve and
explicitly label several points in order to illustrate the directionality. Finally,
manipulate the equations and use trigsimp to eliminate the parameter and
produce an equation in terms of only x and y.

3. Plot the Lissajous curve given by x(t) = cos t, y(t) = sin (3t). How many periods are
completed by each of these functions as t goes from 0 to 2π?

4. For the parametric curve in the previous example, find all points at which a tangent
line has slope 1. You may want to produce a plot of SLOPE(t) and use find_root

to get every value of t with slope 1. Finally, produce a plot of the entire curve in
black together with the tangent lines in red.

5. Compute the arc length of the parametric curve in the previous example.

6. The parametric equations x(t) = t− 0.8 sin t, y(t) = 1− 0.8 cos t define a curtate
cycloid. Compute the location of all horizontal tangents on [0, 2π], then plot the
curve in black with the horizontal tangent lines shown in red.

7. Compute the arc length of the parametric curve in the previous Exercise.

8. The parametric equations x(t) = 1.7 cos t+ 0.4 cos 20t
3 , y(t) = 1.7 sin t− 0.4 sin 20t

3
define a prolate hypocycloid on [0, 6π]. Plot this curve and compute its arc length.

9. Plot the cardioid curve r(θ) = 1− sin θ. Plot all the horizontal and vertical tangent
lines along with the curve. Additionally, clearly plot and label the points of
tangency.

10. Compute the arc length and area inside the cardioid curve in the previous example.

11. Plot the rose curves r(θ) = cos (nθ) for n = 2, 3, 4, 5. What pattern do you notice in
the plots? Make a prediction for n = 16 and produce a plot to test your prediction.

12. For the n = 16 case in the previous exercise, compute the area of a single petal and
shade it in the style of Example 5.4.3.

13. When an object is launched from the origin with a speed of v0 at an angle of θ, the
trajectory is given by a set of parametric equations: x(t) = v0 cos θ · t and
y(t) = v0 sin θ · t− 1

2gt
2, where g is the acceleration of gravity. Using a launch speed

of 100 m/s, launch angle 40◦ and g ≈ 9.8 m/s2, plot the resulting trajectory from
t = 0 to the moment the projectile “lands” (at y = 0).

14. Use makelist to plot 90 trajectories (all in the same plot) for projectiles launched
from the origin at 100 m/s with initial angles θ = 1◦, 2◦, . . . , 90◦. Assume the
projectiles land at y = 0. What angle appears to result in the maximum range for
the projectile?
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15. The differential equation for an undamped harmonic oscillator is given by
x′′(t) = − k

mx(t), where k is the spring constant and m is the mass of the oscillator.
For an oscillator of mass 0.2 kg and spring constant 9 N/m, solve this differential
equation using ode2. Use ic2 to apply the initial conditions x(0) = 0.15 m and
v(0) = x′(0) = 2 m/s. Make a plot showing x(t) and v(t) in two different colors for
the t interval [0, 10].

x(t) and v(t) form a set of parametric equations for the harmonic oscillator. We can
view any state of the oscillator by plotting (x, v) pairs in a graph known as a phase
space plot. Use parametric to produce a phase space plot for the harmonic
oscillator.

16. We can incorporate velocity-dependent damping into the harmonic oscillator from
the previous Exercise by tacking on a damping term to the differential equation:
x′′(t) = − k

mx(t)− b · x′(t). Repeat everything in the previous Exercise for the same
oscillator but with a b = .3 damping term tacked on.

17. * Animations provide a useful window into the directionality of a parametric curve.
Use the following code to create an animation illustrating how the Lissajous figure
in example 5.1.3 is traced out as t goes from 0 to 2π.

Animations work by plotting a list of “scenes” in sequence, each starting with gr2d.
The code below starts with an empty list, then the do-loop uses append to tack on a
new scene for every value of i. Each scene shows the entire Lissajous curve along
with a red point that moves in 1000 steps from the initial to final point on the curve
on [0, 2π]. Finally, wxdraw is used to plot the animated .gif. delay is used to control
the speed of the animation (smaller values indicate faster cycling through the
scenes). On a Windows machine, the animated .gif should appear as a file titled
maxout_n.gif in the current User folder.

(%i1) x(t):=cos(7*t)$

y(t):=sin(3*t)$

(%i2) scene:[]$

for i:0 thru 1000 do

(scene: append(scene,[gr2d(

grid=true,

xaxis=true,

yaxis=true,

title="A Lissajous curve.",

color=black,

nticks=600,

dimensions=[600,600],

parametric(cos(7*t),sin(3*t),t,0,2*%pi),

color=red,

point_type=7,

points([[x(i*2*%pi/1000),y(i*2*%pi/1000)]])

)]));

(%i4) wxdraw(
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delay=5,

terminal=animated_gif,

scene)$

18. * A Lissajous curve is given by the parametric equations x(t) = cos(t+ φ),
y(t) = sin(2t). Create an animation showing how the phase angle φ affects the
curve. Each scene should show the curve resulting from a different phase angle, and
the animation should cycle through phase angles from 0 to 2π in 100 increments.

19. * Create an animation showing how the rose r(θ) = 3 cos (4θ) is drawn on [0, 2π].
Each scene in the animation should show the curve on [0, i ∗ 2π/1000], so the
animation draws the curve from start to finish.
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6.1 Infinite Sequences and Their Limits

An infinite sequence is a list of terms usually following a pattern. We use the notation
{an} to denote the sequence {a1, a2, a3, . . . }, and we only study the case in which an is
given explicitly in terms of n. We can view the sequence as a function with only natural
numbers in its domain: an = a(n) for n = 1, 2, 3, . . . .

Informally, we say that limn→∞ an = L if the terms an become arbitrarily close to L as n
becomes arbitrarily large.

Example 6.1.1. Plot the first 20 terms of the sequence given by an = 2− 3
n . Use your

plot to guess the limit of the sequence, then use limit to verify your answer.

We start by defining the function a(n), then we generate a list of points corresponding to
n = 1, 2, . . . , 20:

(%i1) a(n):=2-3/n$

POINTS:makelist([n,a(n)],n,1,20)$

(%i3) wxdraw2d(

grid=true,

xrange=[0,20],

yrange=[-3,3],

title="The sequence {2-3/n} for n=1,...,20",

color=black,

point_type=7,

points(POINTS)

);

From the plot, it appears that the limit of the sequence is 2. We compute limn→∞ a(n) to
verify our guess:

(%i4) limit(a(n),n,inf);

(%o4) 2
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Example 6.1.2. Plot the first 100 terms of the alternating sequence given by an = (−1)n√
n

.

Guess the limit of the sequence based on your plot, then verify your guess using limit:

(%i5) a(n):=(-1)^n/sqrt(n)$

(%i6) POINTS:makelist([n,a(n)],n,1,100)$

(%i7) wxdraw2d(

grid=true,

xrange=[0,100],

yrange=[-1.5,1.5],

title="The sequence {(-1)^n/sqrt(n)} for n=1,...,100",

color=black,

point_type=7,

points(POINTS)

);

It appears that the limit of the sequence is zero. We verify the limit in wxMaxima:

(%i8) limit(a(n),n,inf);

(%o8) 0

Example 6.1.3. Plot the first 50 terms of the sequence given by an = sin(n). Guess the
limit based on your plot, then verify your guess using limit:

(%i9) a(n):=sin(n)$

POINTS:makelist([n,a(n)],n,1,50)$

(%i11) wxdraw2d(

grid=true,

xrange=[0,50],

yrange=[-1.2,1.2],

title="The sequence {sin(n)} for n=1,...,50",

color=black,

point_type=7,

points(POINTS)

);
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The terms are not getting close to any particular value as n becomes large, so we
conclude that the limit does not exist. wxMaxima agrees:

(%i12) limit(a(n),n,inf);

(%o12) ind
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6.2 Infinite Series and Their Sums

When we sum the terms of an infinite sequence {an}, we obtain the infinite series∑∞
n=1 an. To compute the sum of a series, we define a sequence of partial sums: {Sn},

where Sn is the sum of the first n terms of the series. If limn→∞ Sn = L, then we say the
infinite series converges to L, or we simply say “the sum of the series is L”.

Example 6.2.1. Use a do-loop to print the first 20 partial sums for the series
∑∞
n=1

1
3n .

Do the partial sums approach a finite value? Verify your answer by using sum.

The nth partial sum simply adds up the first n terms of the sequence: S1 = a1,
S2 = a1 + a2, S3 = a1 + a2 + a3, and so on. We use sum inside our loop to compute each
partial sum:

(%i1) a(n):=1/3^n$

(%i2) (print("n...... partial sum"),

print("1 ......",a(1)),

for i:2 thru 20 do

(S:float(sum(a(n),n,1,i)),

print(i,".......",S))

);

n...... partial sum

1 ......1/3

2.......0.44444444444444

3.......0.48148148148148

4.......0.49382716049383

5.......0.49794238683128

6.......0.49931412894376

7.......0.49977137631459

8.......0.49992379210486

9.......0.49997459736829

10.......0.4999915324561

11.......0.49999717748537

12.......0.49999905916179

13.......0.49999968638726

14.......0.49999989546242

15.......0.49999996515414

16.......0.49999998838471

17.......0.49999999612824

18.......0.49999999870941

19.......0.4999999995698

20.......0.4999999998566

It looks like the sum converges to 0.5. We use sum and simpsum to verify:

(%i3) sum(a(n),n,1,inf),simpsum;

(%o3) 1/2
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Example 6.2.2. Compute
∑∞
n=1

1
n4 using sum and simpsum. Use makelist to plot the

sequence {an} together with the sequence of partial sums {Sn}.

(%i4) a(n):=1/n^4$

(%i5) sum(a(n),n,1,inf),simpsum;

(%o5) π4

90

(%i6) float(%);

(%o6) 1.082323233711138

We see that the sum converges to the curious result π4

90 ≈ 1.1. Now we plot {an} and
{Sn}:

(%i7) Apoints:makelist([i,a(i)],i,1,20)$

Spoints:makelist([i,float(sum(a(n),n,1,i))],i,1,20)$

(%i9) wxdraw2d(

grid=true,

xrange=[0,20],

yrange=[-.5,2],

title="The sequence {1/n^4} and its partial sums",

color=dark_grey,

point_type=7,

key="{a_n}",

points(Apoints),

color=black,

point_type=6,

key="{S_n}",

points(Spoints)

);

We see that a1 = S1 = 1, then the an’s rapidly approach zero, so the Sn’s increase only
slightly as n grows.
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Example 6.2.3. Attempt to compute
∑∞
n=1

(−1)n√
n

using sum and simpsum. What

happens? Use makelist to plot the sequence {an} together with the sequence of partial
sums {Sn}. Does the sum appear to converge? Use sum to obtain an approximation for
the sum of the series.

(%i10) a(n):=(-1)^n/sqrt(n)$

sum(a(n),n,1,inf),simpsum;

(%o10) sum((-1)^n/sqrt(n),n,1,inf)

wxMaxima restates the sum, indicating that it cannot compute a closed solution. We
investigate the sum by plotting {an} and {Sn} for n = 1, 2, . . . 100:

(%i11) Apoints:makelist([i,a(i)],i,1,100)$

Spoints:makelist([i,float(sum(a(n),n,1,i))],i,1,100)$

(%i13) wxdraw2d(

grid=true,

xrange=[0,100],

yrange=[-1,1],

title="The sequence {(-1)^n/sqrt(n)} and its partial sums",

color=dark_grey,

point_type=7,

key="{a_n}",

points(Apoints),

color=black,

point_type=6,

key="{S_n}",

points(Spoints)

);

It looks like the sum converges to a value slightly less than −0.5. We use sum to compute∑10000
n=1

(−1)n√
n

as an approximation. Note that when n ≈ 10, 000, we expect the sum to

continue to fluctuate in the hundredths place since 1√
n
≈ 0.01 (obtaining a more accurate

result is just a matter of using a larger n). We redefine a(n) using float to make the
approximation easier on wxMaxima:

(%i14) a(n):=float((-1)^n/sqrt(n))$

(%i15) sum(a(n),n,1,10000);

(%o15) -0.59989876842163
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6.3 Classical Convergence Tests

Using a computer algebra system, we can always apply brute force to determine whether
or not a series converges: we simply add up an enormous number of terms until we are
convinced the partial sums settle down to a finite limit. However, the classical
“pencil-and-paper” convergence tests still have great theoretical utility. In this section we
use wxMaxima to support the classical tests with graphics, algebraic manipulation and a
final check on our work.

6.3.1 The Integral Test

Consider the infinite series
∑∞
n=1 an, where the terms can be generated by evaluating a

continuous, positive and decreasing function f(x) at the natural numbers: an = f(n). We
can test for convergence of the series by investigating the related improper integral∫ ∞
1

f(x) dx (the lower limit doesn’t necessarily have to be 1). Convergence of the

integral implies convergence of the series, and divergence of the integral implies
divergence of the series.

We illustrate the geometric motivation for the integral test by example.

Example 6.3.1. For the series
∑∞
n=1

1
n3/2 , plot the related function f(x) and plot a right

Riemann sum representing the series for n = 1, 2, . . . , 10. Show that

∫ ∞
1

f(x) dx

converges, and use the value of the integral to put an upper bound on the sum of the
series. Finally, use wxMaxima to approximate the sum by using the first 100,000 terms.

We see that the terms of the series can be generated by evaluating the continuous,
positive and decreasing function f(x) = 1

x3/2 at n = 1, 2, . . . . To plot the right Riemann
sum, we use makelist to generate rectangles of width 1 with heights f(1), f(2),...,f(10).
Recall that rectangle expects a pair of vertices at opposite corners of a rectangle.

(%i1) f(x):=1/x^(3/2)$

RECTANGLES:makelist(rectangle([i-1,0],[i,f(i)]),i,1,10)$

wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[-1,11],

yrange=[-0.2,1.5],

title="Right hand sum illustrating an upper bound on a series",

border=true,

color=black,

fill_color=dark_grey,

RECTANGLES,

explicit(f(x),x,0,11)

);
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The areas of the rectangles are 1 · f(1), 1 · f(2), · · · = a1 + a2 + . . . , so the sum of the
series is just the sum of rectangle areas. Since the rectangles are bounded above by f(x),
the bounded area under f(x) is larger than the sum of the series. f(x) diverges at x = 0,

so we start at x = 1 and say that
∑∞
n=2 an <

∫ ∞
1

f(x) dx. Adding a1 to both sides of the

inequality, we obtain our upper bound on the sum of the series:∑∞
n=1 an < a1 +

∫ ∞
1

f(x) dx. We use wxMaxima to compute the upper bound:

(%i4) f(1)+integrate(f(x),x,1,inf);

(%o4) 3

We see that the series converges to a value less than 3. We verify by summing the first
100,000 terms:

(%i5) a(n):=float(1/n^(3/2))$

sum(a(n),n,1,100000);

(%o5) 2.606050809176471

In the Exercises, we explore a method for estimating the uncertainty in such an
approximation.

Example 6.3.2. For the series
∑∞
n=1

1
x , plot the related function f(x) and plot a left

Riemann sum representing the series for n = 1, . . . , 10. Show that

∫ ∞
1

f(x) dx puts a

lower bound on the sum of the series. Finally, use the improper integral to show that the
infinite series diverges.

The terms of the series are generated by the continuous, positive and decreasing function
f(x) = 1

x . We plot f(x) together with the first ten terms in the left sum:

(%i6) f(x):=1/x$

RECTANGLES:(makelist(rectangle([i,0],[i+1,f(i)]),i,1,10))$

wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,
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xrange=[-1,11],

yrange=[-0.2,1.5],

title="Left hand sum illustrating a lower bound on a series",

color=black,

border=true,

fill_color=dark_grey,

RECTANGLES,

explicit(f(x),x,0,11)

);

Once again, the areas of the rectangles are equal to the terms a1, a2, . . . in the series, and

we see that
∑∞
n=1 an >

∫ ∞
1

f(x) dx; in other words, the improper integral is a lower

bound on the sum of the series. Finally, we compute the integral in wxMaxima:

(%i9) integrate(f(x),x,1,inf);

defint: integral is divergent.

-- an error. To debug this try: debugmode(true);

The integral diverges to ∞, so the series must diverge as well.

6.3.2 Comparison Tests

We can test for convergence by comparing to another series whose convergence is already
known. Assuming each series has only positive terms:

1. If an < bn for all n > N and

∞∑
n=1

bn converges, then

∞∑
n=1

an converges as well.

2. If an > bn for all n > N and

∞∑
n=1

bn diverges, then

∞∑
n=1

an diverges as well.

3. If lim
n→∞

an
bn

is finite, then

∞∑
n=1

an and

∞∑
n=1

bn either both converge or both diverge.
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Example 6.3.3. Use the first comparison test to show that
∑∞
n=1

1
3n+5 converges. Use a

do-loop to list the partial sums for n = 1, 2, . . . , 30. What is the approximate sum of the
series?

We compare to the series
∑∞
n=1

1
3n which we have already shown converges to 0.5. Since

1
3n+5 <

1
3n for all n,

∑∞
n=1

1
3n+5 converges (to some value less than 0.5). We illustrate a

sequence of partial sums using a do-loop:

(%i10) a(n):=float(1/(3^n+5))$

(print ("n........S_n"),

for k:1 thru 30 do

(S:sum(a(n),n,1,k),

print(k,".......",S))

);

n........S_n

1.......0.125

2.......0.19642857142857

3.......0.22767857142857

4.......0.23930647840532

5.......0.24333873646983

6.......0.24470113429

7.......0.24515733866956

8.......0.24530963839542

9.......0.24536043075625

10.......0.24537736441019

11.......0.24538300928013

12.......0.24538489093885

13.......0.24538551816236

14.......0.2453857272373

15.......0.24538579692899

16.......0.24538582015956

17.......0.24538582790309

18.......0.24538583048426

19.......0.24538583134466

20.......0.24538583163145

21.......0.24538583172705

22.......0.24538583175892

23.......0.24538583176954

24.......0.24538583177308

25.......0.24538583177426

26.......0.24538583177465

27.......0.24538583177479

28.......0.24538583177483

29.......0.24538583177484

30.......0.24538583177485

(%o11) done

The series converges quickly to about 0.245.
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Example 6.3.4. Test the convergence of
∑∞
n=1

3n+2√
n4−5 using the third comparison test.

As n grows large, the higher powers of n dominate all the linear combinations of terms:
an → 3n√

n4
= 3

n , so we compare to bn = 1
n (we have already shown the corresponding

series diverges). We take the limit in wxMaxima:

(%i12) a(n):=(3*n+2)/sqrt(n^4-5)$

b(n):=1/n$

limit((a(n)/b(n)),n,inf);

(%o12) 3

Because the limit results in a finite number, we conclude that both series diverge.

6.3.3 Alternating Series and Absolute Convergence

An alternating series is a series in which the terms alternate between positive and
negative values. An alternating series

∑∞
n=1(−1)n+1an or

∑∞
n=1(−1)nan (where an > 0)

converges if limn→∞ an = 0 and an+1 < an for all n > N ; that is, the magnitude of the
terms both decreases and approaches zero as n grows large.

Note that the comparison of an+1 and an is not always simple: it may be easier to refer
to the continuous function f(x) where f(n) = an, then use the first derivative to establish
that the function is decreasing for all n > N .

A series
∑∞
n=1 bn converges absolutely if

∑∞
n=1 |bn| is convergent. A series that

converges absolutely must also converge in the ordinary sense. Some convergent series are
not absolutely convergent – these are called conditionally convergent.

Example 6.3.5. Show that the alternating series
∑∞
n=1

(−1)n·(2n2+5
√
n)

n3+2 converges
conditionally.

We start by testing for absolute convergence. We define f(x), where f(n) = an gives the
absolute value of each term in the series:

(%i13) f(x):=(2*x^2+5*sqrt(x))/(x^3+2)$

In the large x limit, this function approaches 2x2

x3 = 2
x , so we perform a limit comparison

to the divergent series given by bn = 1
n :

(%i14) limit(f(n)/(1/n),n,inf);

(%o14) 2

We conclude that the series of absolute values diverges. To test for ordinary convergence
of the alternating series, we investigate the large n limit:

(%i15) limit(f(x),x,inf);

(%o15) 0
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It is too difficult to compare the terms an+1 and an directly, so we investigate the first
derivative of f(x) and show that f ′(x) < 0 for all sufficiently large x:

(%i16) diff(f(x),x)$

f_prime(x):=’’%;

(%o17) f prime (x) :=
4 x+ 5

2
√
x

x3+2 − 3 x2 (2 x2+5
√
x)

(x3+2)2

We plot f ′(x) to get a sense for what it’s doing:

(%i18) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[0,20],

yrange=[-2,2],

title="f_prime",

color=black,

explicit(f_prime,x,0,20)

);

f ′(x) appears to be negative for all x larger than about 1. We use find_root to nail
down the obvious root, then we verify (to a high degree of confidence) that no additional
roots exist by trying find_root on [5, 1000000]:

(%i19) find_root(f_prime,x,0.5,1.5);

(%o19) 0.95344003838215

(%i20) find_root(f_prime,x,5,1000000);

find_root: function has same sign at endpoints: mequal(f(5.0),-0.11820541726029),

mequal(f(1000000.0),-2.0000000125*10^-12)

-- an error. To debug this try: debugmode(true);

So f ′(x) becomes negative around x = 0.95 and stays negative after that. Since f(x) is
decreasing, we conclude that f(n+ 1) < f(n) for all n > 0.95, and we conclude that the
alternating series converges. Thus, the series is conditionally convergent. We use
wxMaxima to get an approximation:

(%i21) sum(float((-1)^x*f(x)),x,1,10000);

(%o22) -1.378757553897757

148



6.3.4 The Ratio and Root Tests

The ratio and root tests may determine if the series
∑∞
n=1 an converges absolutely:

1. If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1 or lim
n→∞

n
√
|an| < 1, then

∞∑
n=1

an converges absolutely.

2. If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ > 1 or lim
n→∞

n
√
|an| > 1, then

∞∑
n=1

an diverges.

3. When lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1 or lim
n→∞

n
√
|an| = 1, the tests are inconclusive.

Example 6.3.6. Apply both the ratio and root tests to show that
∑∞
n=1

2n

e0.8n−3

converges absolutely.

We don’t have to worry about taking absolute values since the numerator and
denominator are always positive:

(%i23) ratprint:false$

(%i24) a(n):=2^n/%e^(0.8*n-3)$

(%i25) limit(a(n+1)/a(n),n,inf);

(%o25) 0.89865792823444

(%i26) float(limit((a(n))^(1/n),n,inf));

(%o26) 0.89865792823444

In each case, the limit yields a constant less than 1, so the series converges absolutely.

Example 6.3.7. Test the series
∑∞
n=1

nln 2n

n! for convergence. If the series converges,
compute an approximation by adding the first 1000 terms.

(%i27) a(n):=n^(log(2*n))/n!$

(%i28) limit((a(n+1))/a(n),n,inf);

(%o28) 0

(%i29) limit((a(n))^(1/n),n,inf);

(%o29) 0

In each case, we obtain a constant less than 1, so the series is absolutely convergent. We
finish by computing an approximation:

(%i30) sum(float(a(n)),n,1,1000);

(%o30) 4.746354216649364
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6.4 Power Series

6.4.1 Convergence and Radius of Convergence

A power series is an infinite series of the form
∑∞
n=0 an(x− c)n. We say the series is

“centered at c”. To test the convergence of a power series, we use the ratio or root tests
to put constraints on the values of x for which the series converges. With rare exceptions,
a power series converges for all values of x within a certain distance, R of c. R is called
the radius of convergence and (c−R, c+R) is called the interval of convergence.
The endpoints of the interval of convergence must be tested separately for convergence.

Example 6.4.1. Find the values of x for which the series
∑∞
n=0 ax

n converges.

The series converges when limn→∞

∣∣∣an+1

an

∣∣∣ < 1. We define the terms of the sequence as

A(n) and take the limit in wxMaxima:

(%i1) A(n):=a*x^n$

limit(abs(A(n+1)/A(n)),n,inf);

(%o2) |x|

The series is convergent when |x| < 1, divergent when |x| > 1, and the test is inconclusive
when |x| = 1. We investigate the inconclusive cases x = ±1: when x = 1, we get the series∑∞
n=0 a =∞, and when x = −1, we get the series

∑∞
n=0 a(−1)n which is also divergent

(the partial sums oscillate between 0 and a, so the limit does not exist). Thus, the series
only converges on (−1, 1).

Incidentally, this series is known as a geometric series, and wxMaxima knows its sum (we
have to indicate that x lies on the interval of convergence):

(%i3) sum(A(n),n,0,inf),simpsum;

"Is "abs(x)-1" positive, negative, or zero?"negative;

(%o3) a/(1-x)

Example 6.4.2. Find the values of x for which the series
∑∞
n=0

xn

n! converges.

We define the nth term and apply the ratio test once again:

(%i4) A(n):=x^n/n!$

(%i5) limit(abs(A(n+1)/A(n)),n,inf);

(%o5) 0

The result is less than 1 regardless of the value of x. The radius of convergence is infinite,
and the interval of convergence is (−∞,∞).
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Example 6.4.3. Find the values of x for which the series
∑∞
n=0

(x−2)n
n(n+1) converges.

(%i6) A(n):=(x-2)^n/(n*(n+1))$

(%i7) limit(abs(A(n+1)/A(n)),n,inf);

(%o7) |x-2|

|x− 2| < 1 =⇒ −1 < x− 2 < 1 =⇒ 1 < x < 3, so the series converges on (1, 3). Testing

the endpoint x = 1, we obtain the alternating series
∑∞
n=0

(−1)n
n(n+1) which converges

because limn→∞
1

n(n+1) = 0 and 1
(n+1)(n+2) <

1
n(n+1) . Testing the endpoint x = 3, we

obtain
∑∞
n=0

1
n(n+1) which converges by comparison to

∑∞
n=0

1
n2 because 1

n(n+1) <
1
n2 .

Thus, the interval of convergence is [1, 3].

6.4.2 Taylor Series

A Taylor series is a power series representation of a differentiable function, f :
f(x) = a0 + a1(x− c) + a2(x− c)2 + . . . . The coefficients an are determined by evaluating
f(x) and its derivatives at x = c (as illustrated in the next Example). When x is very
close to c, the higher powers of (x− c) are small, and we can truncate the Taylor series to
obtain a polynomial approximation to f(x) that is accurate near c. In applications, it is
very common to truncate a Taylor series centered at c = 0 (a Maclaurin series) even if
it requires shifting the origin to a point of interest.

Example 6.4.4. Derive the first five Taylor coefficients by defining
f(x) = a0 + a1(x− c) + a2(x− c)2 + . . . and computing f(c), f ′(c), f ′′(c), and so on.

Before we appeal to wxMaxima, we note that evaluating f(x) at x = c wipes out every
term except the first (a0). This pattern will continue with each successive derivative: only
the first term lacks a factor of (x− c), so it will be the only survivor at each step. We
obtain the first five coefficients by using a finite series for f(x) in wxMaxima and using a
do-loop to streamline the output:

(%i8) f(x):=a_0+a_1*(x-c)+a_2*(x-c)^2+a_3*(x-c)^3+a_4*(x-c)^4+a_5*(x-c)^5$

(%i9) (for n:0 thru 4 do

(N:subst([x=c],diff(f(x),x,n)),

print("f^(",n,")(x)=",diff(f(x),x,n)),

print("f^(",n,")(c)=",N))

);

f^(0)(x)=a_5*(x-c)^5+a_4*(x-c)^4+a_3*(x-c)^3+a_2*(x-c)^2+a_1*(x-c)+a_0

f^(0)(c)=a_0

f^(1)(x)=5*a_5*(x-c)^4+4*a_4*(x-c)^3+3*a_3*(x-c)^2+2*a_2*(x-c)+a_1

f^(1)(c)=a_1

f^(2)(x)=20*a_5*(x-c)^3+12*a_4*(x-c)^2+6*a_3*(x-c)+2*a_2

f^(2)(c)=2*a_2

151



f^(3)(x)=60*a_5*(x-c)^2+24*a_4*(x-c)+6*a_3

f^(3)(c)=6*a_3

f^(4)(x)=120*a_5*(x-c)+24*a_4

f^(4)(c)=24*a_4

(%o9) done

We see that a0 = f(c), a1 = f ′(c), a2 = f ′′(c)
2 , a3 = f ′′′(c)

6 = f ′′′(c)
3! , and so on. It is no

coincidence that the denominators are factorials: they are a consequence of successive
powers of (x− c) being carried to the front of each term as we take higher and higher
derivatives. We conclude that the general formula for the Taylor coefficients is

an = f(n)(c)
n! . Recall that 0! = 1 so the formula still works for the n = 0 case.

Example 6.4.5. Compute the first five non-zero coefficients of the Maclaurin series for
f(x) = sinx and g(x) = cosx. Use the pattern in coefficients to write down infinite series
for both functions. Finally, show that the derivative of the series for sinx yields the series
for cosx.

We use the formula an = f(n)(0)
n! together with makelist to generate a list of terms for

each function:

(%i10) f(x):=sin(x)$

g(x):=cos(x)$

SINETERMS:makelist(x^n*subst([x=0],diff(f(x),x,n))/n!,n,0,9);

COSINETERMS:makelist(x^n*subst([x=0],diff(g(x),x,n))/n!,n,0,9);

(%o12) [0,x,0,-x^3/6,0,x^5/120,0,-x^7/5040,0,x^9/362880]

(%o13) [1,0,-x^2/2,0,x^4/24,0,-x^6/720,0,x^8/40320,0]

Using factorial notation, we can write: sinx = x− x3

3! + x5

5! −
x7

7! + x9

9! − . . . and

cosx = 1− x2

2! + x4

4! −
x6

6! + x8

8! − . . . . We convert these into series notation:

sinx =

∞∑
n=0

(−1)nx(2n+1)

(2n+ 1)!
and cosx =

∞∑
n=0

(−1)nx2n

(2n)!

Finally, we differentiate the first series to obtain the second:

(%i14) A(n):=(-1)^n*x^(2*n+1)/(2*n+1)!$

(%i15) sum(A(n),n,0,inf);

(%o15)

∞∑
n=0

(−1)
n
x2n+1

(2n+ 1)!

(%i16) diff(%,x);
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(%o16)

∞∑
n=0

(2n+ 1) (−1)
n
x2n

(2n+ 1)!

(%i17) factcomb(%);

(%o17)

∞∑
n=0

(−1)
n
x2n

(2n)!

We retrieve the infinite series for cosx.

Example 6.4.6. Use wxMaxima’s built-in function taylor to find the first 5 terms of
the Taylor series for f(x) =

√
x sinx centered at c = 2. Plot f(x) together with the linear,

quadratic, cubic and quartic Taylor approximations near c = 2.

taylor accepts four arguments: the function to be expanded, the variable, the center of
the expansion (c), and the maximum power of x to return in the truncated series:

(%i18) f(x):=sqrt(x)*sin(x)$

taylor(f(x),x,2,4);

(%o19)/T/ sin (2)
√

2 + (sin(2)+4 cos(2))
√
2 (x−2)

4 − (17 sin(2)−8 cos(2))
√
2 (x−2)2

32 −
(45 sin(2)+76 cos(2))

√
2 (x−2)3

384 + (337 sin(2)−208 cos(2))
√
2 (x−2)4

6144 + ...
Now we define the linear, quadratic, cubic and quartic approximations (the plotting code
is only shown for the quartic approximation):

(%i20) linear:taylor(f(x),x,2,1)$

quadratic:taylor(f(x),x,2,2)$

cubic:taylor(f(x),x,2,3)$

quartic:taylor(f(x),x,2,4)$

(%i21) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[0,4],

yrange=[-2,2],

title="Quartic approximation to f(x) near x=2",

color=black,

line_width=2,

explicit(f(x),x,0,4),

color=dark_red,

line_width=1,

explicit(quartic,x,0,4)

);
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We see the approximation improving as we keep additional terms. The quartic
approximation is very close to f(x) on [0.5, 3.5], and larger values of n will result in even
larger intervals on which the approximation works well.
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6.5 *Fourier Sine Series

Using a Taylor series, we expressed reasonable functions f(x) in terms of the set of
functions {1, x, x2, . . . }, where a derivative trick was used to compute the proper
coefficient of each term. We also approximated f(x) by truncating the Taylor series after
a finite number of terms.

It is also possible to represent f(x) as an infinite series of sine functions completing an
integer number of half-periods on [0, L] : f(x) =

∑∞
n=1 an sin

(
nπx
L

)
. This representation

is known as a Fourier sine series. The functions in the sine series have sufficient
flexibility to represent any reasonable f(x), and they also have the necessary properties to
use an integral trick to determine the coefficients.

In this section, we learn how to compute the Fourier coefficients with the assistance of
wxMaxima, then we plot several Fourier approximations to get a sense for how the sine
series converges to a function f(x).

Example 6.5.1. Use wxMaxima to compute the integral

∫ L

0

sin
(nπx
L

)
sin
(mπx

L

)
dx

for n 6= m and n = m.

(%i1) f(x,n):=sin(n*%pi*x/L)$

declare(n,integer)$

declare(m,integer)$

(%i4) integrate(f(x,n)*f(x,m),x,0,L);

"Is "L" positive, negative, or zero?"positive;

(%o4) 0

(%i5) integrate(f(x,n)*f(x,n),x,0,L);

"Is "L" positive, negative, or zero?"positive;

(%o5) L/2

We see that

∫ L

0

sin
(nπx
L

)
sin
(mπx

L

)
dx evaluates to L

2 when n = m, but the integral

vanishes when n 6= m (a property called orthogonality).

155



To compute the Fourier coefficients, we start with the series expansion
f(x) =

∑∞
n=1 an sin

(
nπx
L

)
, multiply both sides by sin

(
mπx
L

)
and integrate from 0 to L:∫ L

0

f(x) sin
(mπx

L

)
dx =

∫ L

0

sin
(mπx

L

) ∞∑
n=1

an sin
(nπx
L

)
dx

When we distribute sin
(
mπx
L

)
into the series, we obtain infinitely many terms, but every

resulting integral vanishes except for the n=m term. The right hand side thus simplifies to
a single integral that we have already seen:∫ L

0

f(x) sin
(mπx

L

)
dx = am

∫ L

0

sin
(mπx

L

)
sin
(mπx

L

)
dx = am

L

2

Finally, we solve for am:

am =
2

L

∫ L

0

f(x) sin
(mπx

L

)
dx

Example 6.5.2. Compute the first six Fourier coefficients for f(x) = x on [0, 3]. Produce
six plots showing the Fourier approximations to f(x) obtained by keeping successively
more terms in the sine series.

(%i6) a(m):=(2/3)*integrate(x*sin(m*%pi*x/3),x,0,3)$

(%i7) LIST:makelist(a(m),m,1,6);

(%o7) [ 6π ,−
3
π ,

2
π ,−

3
2π ,

6
5π ,−

1
π ]

We set up the code so all we have to do is enter n to obtain the n-term approximation,
then we produce the plots (code is shown for the n = 3 case):

(%i8) APPROX(n):=sum(LIST[k]*sin(k*%pi*x/3),k,1,n)$

(%i9) wxdraw2d(

grid=true,

xrange=[-0.2,3.2],

yrange=[-0.2,3.2],

title="n=3 Fourier sine approximation to f(x)=x on [0,3]",

color=black,

line_width=2,

explicit(x,x,0,3),

color=dark_red,

line_width=1,

explicit(APPROX(3),x,0,3)

);
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We see that the approximation improves as we include more terms of the sine series.

Example 6.5.3. Use wxMaxima’s built-in function foursin to compute the Fourier sine
coefficients for f(x) = x2 on [0, 5]. Plot f(x) together with the n = 50 approximation.

We have to load the package fourie before applying foursin to our function. wxMaxima
computes a closed formula for the coefficients in terms of n, then we have to define a
function based on that formula and construct the n = 50 partial sum before plotting:

(%i1) load(fourie)$

(%i2) foursin(x^2,x,5);

(%t2)b[n]=(2*((250*sin(%pi*n))/(%pi^2*n^2)-(125*cos(%pi*n))/(%pi*n)+

(250*cos(%pi*n))/(%pi^3*n^3)-250/(%pi^3*n^3)))/5

(%o2) [%t2]
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(%i3) rhs(%t2)$

(%i4) a(n):=’’%;

(%o4) a (n) :=
2 ( 250 sin(π n)

π2 n2 − 125 cos(π n)
π n +

250 cos(π n)

π3 n3 − 250
π3 n3 )

5

(%i5) APPROX50:sum(a(n)*sin(n*%pi*x/5),n,1,50)$

wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

dimensions=[600,600],

xrange=[-0.2,5.2],

yrange=[-0.2,25.5],

title="n=50 Fourier sine approximation to f(x)=x^2",

color=black,

line_width=2,

explicit(x^2,x,0,5),

color=dark_red,

line_width=1,

explicit(APPROX50,x,0,5)

);

We see that the sine series converges on the function f(x) = x2, except for one interesting
feature: every sine function in the series vanishes at the endpoints of the interval, so the
sum also vanishes at the endpoints. Our approximation dives down to 0 after covering x2

quite well on most of the interval [0, 5].
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6.6 Module 6 Exercises

1. Plot the sequence {an} =
√
x2−4
x+3 and compute limn→∞ an.

2. Plot the terms of the sequence given by an = 3n4−2n
n6 together with the sequence of

partial sums Sn =
∑n
k=1 ak. Compute limn→∞ Sn by simply using sum when n =∞.

3. A “squeeze theorem” can be defined for the limit of a sequence: if an ≤ bn ≤ cn for
all x ≥ N , and limn→∞ an = limn→∞ cn = L, then limn→∞ bn = L. To illustrate the
squeeze theorem, plot the terms of {− 1

n} and {+ 1
n} (in black) as lower and upper

bounds on the terms of { sinnn } (in red). Show that the limit of { sinnn } agrees with
the limits of the upper and lower bounds.

4. If the nth term of a sequence does not approach zero in the large n limit, then the
sequence of partial sums must diverge. Show that the sequence {1 + 1

n2 } converges
to a finite value. Plot 20 terms of {1 + 1

n2 } together with the sequence of partial
sums to illustrate why the sequence of partial sums diverges.

5. Use the idea of the previous Exercise to show that
∑∞
n=1

√
n

lnn diverges.

6. The integral test can show convergence as long as we use a continuous function that
is eventually positive and decreasing. Use the graphs of f(x) = ln x

x2 and f ′(x) with
find_root to establish the value of x after which f(x) is decreasing and positive.
Compute an integral to show that

∑∞
n=1

ln x
x2 converges. Write down an upper

bound for the series in terms of an integral, and illustrate your answer by graphing
the appropriate Riemann sum.

7. We can use the idea of the integral test to place error bounds on a partial sum.
Suppose we sum the first n terms of a series to obtain a partial sum Sn, and the
terms of the series are positive and decreasing for x ≥ n, and generated by a
continuous function f(x). The partial sum is an underestimate of the total sum,
and we say the remainder is Rn = S − Sn, where S is the true sum. If we view the
remaining terms of the series an+1, an+2, . . . as a right Riemann sum, then the

integral

∫ ∞
n

f(x) dx gives us an upper bound on the remainder. If we view the

remaining terms as a left Riemann sum, then the integral

∫ ∞
n+1

f(x) dx gives us a

lower bound on the remainder.

Compute the partial sum
∑10000
n=1

n+3
n3+n , compute the upper and lower bounds on the

remainder, and write down an interval for the possible values of S.

8. Use the integral test to show that
∑∞

1
1√
x ln x

diverges.

9. Use the limit comparison test to determine whether or not the series
∑∞
n=1

√
3n2−1
n3+5x

converges.

10. Use the ratio test to show that
∑∞
n=1

n
2n converges. Then use the limit comparison

test to show that
∑∞
n=1

n
2n−1 converges.

11. Attempt to use the integral test to show that
∑∞
n=1

lnn
2n−1 converges. What

happens? Use a do-loop to show the partial sums for n = 100, 200, . . . , 2000. Does it
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appear that the series converges? Use the results of the previous exercise to show
that the series converges (you must establish that lnn < n).

12. Show that the series
∑∞
n=1

(−1)nn10

en converges absolutely.

13. Show that the series
∑∞
n=1(−1)n

(
π
2 − tan−1 n

)
converges conditionally.

14. Use taylor to compute the first ten terms of the Taylor series for lnx centered at
x = 1. Find an explicit formula for the nth term of the expansion, and compute the
interval of convergence. Show that the series converges at x = 2, then express ln 2
as an infinite series. What is the common name for this series?

15. Compute the first ten terms of the Maclaurin series for f(x) = (1 + x)n using
taylor. What is the error committed by the linear approximation when x = 0.001?

16. Use taylor to write down at least the first ten terms of the Maclaurin series for eix

(the symbol for the imaginary unit is %i in wxMaxima). Separate the real and
imaginary terms (mentally) to obtain two separate infinite series. Do you recognize
the two series? Finally, write down eix as a linear combination of cosx and sinx.

17. Use taylor to write down the Maclaurin series for coshx. Can you find an
argument of the cosine function to produce this same series? Check your answer in
wxMaxima.

18. Express f(x) = 1
1+x2 as a Maclaurin series (keep at least five non-zero terms) using

taylor. Set up an equation with f(x) on the left side and its power series on the
right side. Use integrate on your equation, then evaluate the result at x = 1 to
obtain an infinite series for π. Write down the explicit formula for the nth term of
the series. Finally, use sum to find the 100-term approximation to π. What is the
error committed by your approximation?

19. For the simple pendulum, a torque analysis yields the second order ODE
d2θ
dt2 = − g

L sin θ, where g is the acceleration of gravity, L is the length of the
pendulum and θ is the angle of the pendulum measured with respect to “straight
down”. This differential equation is non-linear and has no closed form solution.
However, we can make a small angle approximation using the Taylor series centered
at c = 0: if θ is “small”, then we can truncate the series for sin θ after the linear
term to linearize the ODE.

(a) What is the linear approximation for sin θ when θ is close to zero?

(b) Plot sin θ and the linear approximation in the same window for the interval
[−.5, .5]. Remember, the angle is measured in radians here, so this corresponds
to about 30◦ displacement from the equilibrium position.

(c) Compute the range of θ values for which the error committed by the linear
approximation is less than 5%.

(d) Use ode2 to compute the general solution of the linearized ODE. What is the
period of the solution?

20. *A standing wave results from a vibration on a string for which an integer number
of half-wavelengths fits precisely on the length of the string. For a given string,
there is only a discrete set of wavelengths (and frequencies) that result in standing
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waves. For a length L, amplitude A and wave velocity v, the equation of a standing
wave is y(x, t) = A sin

(
nπx
L

)
· cos

(
nπv
L t
)

for n = 1, 2, 3, . . . .

The following code uses L = 1, v = 1, n = 3 and A = 1 to create an animation
showing a standing wave with scenes computed every 0.02 s for 10 s:

(%i1) TIMEDEP(x,t,n):=sin(n*%pi*x)*cos(n*%pi*t)$

(%i2) TIMEDEP3:TIMEDEP(x,t,3)$

(%i3) scene:[]$

for i:0 thru 500 do

(scene:append(scene,[gr2d(

grid=true,

xaxis=true,

yaxis=true,

nticks=600,

xrange=[0,1],

yrange=[-1,1],

color=black,

line_width=2,

explicit(subst(0.02*i,t,TIMEDEP3),x,0,1)

)]));

(%o4) done

(%i5) wxdraw(

delay=1,

terminal=animated_gif,

scene)$

(a) Run the n = 3 animation.

(b) Create a second animated .gif for the n = 5 case.

(c) Create an animation of a combination of the n = 3 and n = 5 standing waves,
giving the n = 5 case one third the amplitude of the n = 3 case.

21. *To model a plucked guitar string, we use a Fourier sine series to express the initial
state as a superposition of many sine waves that vanish at the endpoints. The
payoff of this approach is that the time evolution of each sine wave is simple: each
sine function is simply a standing wave, and it will evolve according to the formula
y(x, t) = A sin

(
nπx
L

)
· cos

(
nπv
L t
)
.

Suppose a guitar string is constrained to the interval [0, 2] and it is plucked with an

initial shape given by the piecewise defined function f(x) =


x 0 ≤ x ≤ 0.5

1− x 0.5 ≤ x ≤ 1

0 1 ≤ x ≤ 2

(a) Compute a 50-term Fourier sine series approximation to this function on [0, 2],
then plot the approximation together with f(x) to verify that it works. Note:
foursin will not work in this case because f(x) is defined piecewise. You will
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have to compute the coefficients by using integrate and splitting the
integration interval.

(b) Assuming v = 5, attach the correct time dependence to each term in the
Fourier expansion and create an animation showing how the shape of the
string evolves for twenty seconds after the initial pluck. Use time steps of 0.02
seconds to compute scenes for the animation.

(c) In realistic waves, higher frequencies die out more quickly than lower
frequencies. Use a damping factor of e−(0.1n)t attached to each nth term and
run the animation again. If your animation is working correctly, the vibrations
will settle down to the “fundamental” after a while (in the fundamental mode,
the center of the string simply moves up and down).
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