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Preface

Computer Algebra Systems:

A computer algebra system is a collection of software designed primarily for symbolic
manipulation. A CAS can do just about any symbolic calculation one might do “by hand”,
but the CAS is much faster, more accurate and capable of handling greater complexity.
Complex calculations can be broken into manageable pieces by using function assignments,
and systems can be explored by quickly changing their parameters. In addition to symbolic
manipulation, a CAS can produce quality graphics, make numerical approximations of
various types and run simple programs to solve problems that cannot be solved symbolically.

wxMaxima:

wxMaxima is a user interface for the computer algebra system Maxima. The interface al-
lows the user to build, edit and save a document (a .wxm file) containing many calculations
and graphics, and most operations can be accessed through the GUI if desired. Maxima
and wxMaxima are open-source projects, which means they will always be free and they
are always improving thanks to the pro bono work of their many enthusiasts.

The latest version of wxMaxima for Windows and Mac machines can be obtained here:
http://andrejv.github.io/wxmaxima/. When you click the download link for your op-
erating system, you will be taken to a sourceforge.net page that will automatically download
Maxima, wxMaxima, GNUplot and any other necessary auxilliary programs required for
wxMaxima to run on your machine. Installation on a Windows machine typically takes
about 5 minutes.

Software Versions

This text is written using wxMaxima version 12.04.0 and Maxima version 5.27.0. If you
run newer versions of the software it is unlikely to cause any problems. Bugs do occur
rarely, however, so I recommend that the instructor and students all use the same version
in case troubleshooting becomes necessary.

v
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“wxMaxima for” Series

I have released two books in the “wxMaxima for” series:

“wxMaxima for Calculus I” June 2015
“wxMaxima for Calculus II” June 2015

with plans to publish similar texts for Linear Algebra, Differential Equations and Multi-
variable Calculus over the next several years.

Texts can be obtained at https://wxmaximafor.wordpress.com/. The texts are available
as free .pdf downloads or an affordable “print-on-demand” option.

The texts primarily target lower division students who are concurrently taking the standard
sequence of mathematics courses for engineering, physical science and applied mathematics
majors. Universities increasingly expect such students to be competent with mathematical
software when they begin their upper division courses, and many institutions currently run
math labs to address this need. Each text in the “wxMaxima for” sequence can serve as a
lab manual for a one semester, 1-unit lab course, or a valuable “by example” resource for
students learning computer algebra independently.

Assuming only basic experience with computers (comfort with an operating system such as
Windows or Mac OS), each text gradually introduces computer algebra by using examples
relevant to the concurrent math course. The main theoretical points of each course are
reviewed concisely, and commands are introduced as they are needed. Examples motivate
and reinforce the important mathematical concepts and illustrate their applications in the
context of computer algebra. Written commands are used exclusively for two reasons:
first, they are more powerful and flexible, and secondly, getting comfortable with written
commands ensures that the computing learned here will translate easily to other software
packages.

Text Layout

Each text is divided into 7 modules, each consisting of several sections and subsections.
Each subsection typically starts with a short theoretical discussion followed by several Ex-
amples worked in wxMaxima. Each module ends with a short set of Exercises progressing
from routine to advanced. Exceptionally challenging sections and Exercises are marked
with an asterisk.

This text is not intended to be an encyclopedic reference manual, but each module contains
a list of “Key Commands” on the title page to make it easier to search for an example that
uses a particular command.

vi
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To the student

For students with very little computer experience, the first couple modules will move very
slowly. Making mistakes and debugging your commands is a natural part of learning the
syntax of a new program. Although wxMaxima will attempt to help you with errors, the
most valuable resource you have is internet research. If you Google a particular problem,
you will find a variety of forums on the web where you will likely find a similar problem
addressed. With time, your wxMaxima vocabulary and your ability to search efficiently will
grow. Note that it is wise to include “wxMaxima” in your queries rather than “Maxima”,
as the latter term has many meanings other than the computer algebra system!

The official Maxima manual can be found at http://maxima.sourceforge.net/docs/

manual/maxima.html, though you should be warned that it is written for an audience with
a high degree of computing knowledge. I occasionally use the official manual, but I have
found that searching for relevant examples is the fastest way to learn.

It is important to work through the Examples yourself, whether or not they are assigned
by your instructor. When you type out the commands for yourself, you will undoubtedly
make syntax errors that have to be debugged. Fixing your syntax in a worked example is
excellent preparation for doing the Exercises on your own.

To the Instructor

There are varying levels at which this material can be incorporated in your course. You
may decide to have the students simply reproduce and submit all Examples from the text,
or you may decide to only assign selected Exercises and let the students use the text for
reference on their own. The material can be casual or very demanding depending on how
much you include in your course.

I recommend that students submit their work by e-mail in a well-formatted wxMaxima
worksheet (.wxm) file with a clear header and Examples and/or Exercises clearly labeled.
Students can insert text lines in their worksheet by selecting Cell > Insert Text Cell or
hitting Ctrl+1. When you open the worksheet, the commands will have to be re-executed,
and this is a quick way to verify that all the code works and the desired solutions are
obtained. Students have the responsibility to debug their work until it runs without error.

Any feedback on this text is greatly appreciated and will be taken into consideration for
future editions.

Thank you,

Zak Hannan
Instructor of Mathematics and Physics
Solano Community College, Fairfield, CA
zhannan@solano.edu
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0.1 Basic Operations

0.1.1 Arithmetic

wxMaxima uses +,-,*,/,^,sqrt,log for add, subtract, multiply, divide, exponentiate,
square root and natural log. We use % to call a prior result and float to find a decimal
approximation. To show the results of each calculation, we end the input line with ; and
hit shift+enter. If we wish to hide the output of a calculation, we end the line with $

instead of ;.

Example 0.1.1. Perform the following arithmetic operations:

1. Compute 3 · 2 + 5.
2. Add

√
2 to the previous output.

3. Find a decimal approximation for the previous output.
4. Square the previous output.

(%i1) 3*2+5;

(%o1) 11

(%i2) %+sqrt(2);

(%o2) sqrt(2)+11

(%i3) float(%);

(%o3) 12.4142135623731

(%i4) %^2;

(%o4) 154.1126983722081

You will find that your output is occasionally “prettier” than the output shown in this
text; for example, sqrt(2)+11 should display as

√
2 + 11. We use the “pretty” format

only when necessary for clarity.

Example 0.1.2. Add 5
6 and 7

15 and find the reduced form of the result, then express
your answer as a decimal approximation.

(%i5) (5/6)+(7/15);

(%o5) 13/10

(%i6) float(%);

(%o6) 1.3

Note that wxMaxima automatically puts the exact fraction form in lowest terms for us.

Example 0.1.3. wxMaxima uses the symbol %e for the ubiquitous constant e. Find a
decimal approximation for e and verify that ln e = 1.

(%i7) float(%e);

(%o7) 2.718281828459045

(%i8) log(%e);

(%o8) 1

2



0.1.2 Algebra

wxMaxima can handle basic algebraic operations on variable expressions as well as
numbers: combining like terms, expanding and factoring, adding/substracting/reducing
rational expressions, etc. In some cases a complete simplification is automatic, and in
other cases we have to coax a simplification using ratsimp or fullratsimp (the latter
command simply applies ratsimp repeatedly). Note that an input like 5x results in an
error – we have to explicitly note the multiplication by writing 5*x.

Example 0.1.4. Perform the following operations:

1. Simplify: (3a+ b) + 2(2a− b)

We enter the expression and apply ratsimp to combine like terms:

(%i9) (3*a+b)+2*(2*a-b);

(%o9) b+2*(2*a-b)+3*a

(%i10) ratsimp(%);

(%o10) 7*a-b

2. Expand: (a+ b)3

expand cubes the binomial:

(%i11) (a+b)^3;

(%o11) (b+a)^3

(%i12) expand(%);

(%o12) b^3+3*a*b^2+3*a^2*b+a^3

3. Factor: x2 − 8x+ 12

We simply apply factor:

(%i13) factor(x^2-8*x+12);

(%o13) (x-6)*(x-2)

4. Add and express in factored form: 5
x2−1 + x−2

x2+2x−3

We add using ratsimp, then put the answer in factored form using factor:

(%i14) 5/(x^2-1)+(x-2)/(x^2+2*x-3);

(%o14) (x-2)/(x^2+2*x-3)+5/(x^2-1)

(%i15) ratsimp(%);

(%o15) (x^2+4*x+13)/(x^3+3*x^2-x-3)

(%i16) factor(%);

(%o16) (x^2+4*x+13)/((x-1)*(x+1)*(x+3))

5. Reduce:
2x2+xy

y
xy+x

y2

We enter the complex fraction, reduce using ratsimp and factor using factor:
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(%i17) ((2*x^2+x*y)/y)/((x*y+x)/y^2);

(%o17) (y*(x*y+2*x^2))/(x*y+x)

(%i18) ratsimp(%);

(%o18) (y^2+2*x*y)/(y+1)

(%i19) factor(%);

(%o19) (y*(y+2*x))/(y+1)

0.1.3 Trigonometry

wxMaxima knows about all the trigonometric functions. We input angles in radians, so
any angle measured in degrees must be converted to radians using a factor of 2π

360 . %pi is
the special symbol for π.

Example 0.1.5. Compute sin 85◦ and tan 11π
12 .

(%i20) 85*2*%pi/360;

(%o20) (17*%pi)/36

(%i21) sin(%);

(%o21) sin((17*%pi)/36)

(%i22) float(%);

(%o22) 0.99619469809175

(%i23) float(tan(11*%pi/12));

(%o23) -0.26794919243112

We use trigsimp to apply pythagorean identities, trigreduce to reduce powers of trig
functions and trigexpand to expand functions of “multiple angles”.

Example 0.1.6. A survey of trigonometric manipulations.

1. Apply trigreduce to sin2 x+ cos2 x. What happens? Try using trigsimp instead.

(%i24) trigreduce((sin(x))^2+(cos(x))^2);

(%o24) (cos(2*x)+1)/2+(1-cos(2*x))/2

trigreduce resulted in a more complicated expression – we apply trigsimp instead:

(%i25) trigsimp((cos(x))^2+(sin(x))^2);

(%o25) 1

2. Express sin2 x in terms of a “double angle”.
This time trigreduce is the desired command:

(%i26) trigreduce((sin(x))^2);

(%o26) (1-cos(2*x))/2

3. Obtain a formula for cos (x+ y) in terms of sinx and cosx.
trigexpand will simplify the argument of the cosine:

(%i27) trigexpand(cos(x+y));

(%o27) cos(x)*cos(y)-sin(x)*sin(y)

4



0.2 Expressions and Functions

One of the powerful features of a computer algebra system is that we can label a variety
of objects then “call” them later using that label. We can assign a label to an expression
using “:” and we can assign a label to a function using “:=”. Expressions can be
evaluated for specific values of the variable(s) using subst or sublis, while functions are
evaluated using ordinary function notation. Expressions and functions have a variety of
pros and cons that will emerge as we proceed – often we can choose either one to solve a
problem.

Example 0.2.1. Assign A to the expression 2x+ 5 and B to the expression 6− x4, then
compute A+B, A−B and AB in expanded form.

We assign A and B on two consecutive lines before executing with shift+enter.

(%i1) A:2*x+5$

B:6-x^4$

(%i3) A+B;

(%o3) -x^4+2*x+11

(%i4) A-B;

(%o4) x^4+2*x-1

(%i5) A*B;

(%o5) (2*x+5)*(6-x^4)

(%i6) expand(%);

(%o6) -2*x^5-5*x^4+12*x+30

Example 0.2.2. Use subst to evaluate A when x = −3 and when x = B.

(%i7) subst(-3,x,A);

(%o7) -1

(%i8) subst(B,x,A);

(%o8) 2*(6-x^4)+5

Example 0.2.3. Assign f(x) to the square root function. Evaluate f(4), f(−4) and
f(A).

(%i9) f(x):=sqrt(x);

(%o9) f(x):=sqrt(x)

(%i10) f(4);

(%o10) 2

(%i11) f(-4);

(%o11) 2*%i
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(%i12) f(A);

(%o12) sqrt(2*x+5)

We see that
√
−4 evaluates to 2i. Note that the special symbol for the imaginary unit i is

%i. wxMaxima is not restricted to only real solutions!

Example 0.2.4. Use sublis to evaluate −b+
√
b2−4ac
2a when a = 1, b = −3 and c = 5.

(%i9) EXPN:(-b+sqrt(b^2-4*a*c))/(2*a)$

(%i10) sublis([a=1,b=-3,c=5],EXPN);

(%o10) (sqrt(11)*%i+3)/2

Functions can have an arbitrary number of variables. Sometimes we use a variable as a
parameter to create a family of related functions:

Example 0.2.5. Define fn(x) = cos (nπx), then list fn(x) for several values of n.

(%i13) f(n,x):=cos(n*%pi*x)$

f(1,x);

f(2,x);

f(3,x);

(%o14) cos(%pi*x)

(%o15) cos(2*%pi*x)

(%o16) cos(3*%pi*x)

6



0.3 2D and 3D Plots

wxMaxima creates plots by calling another program called GNUplot. In this text, we
exclusively use the commands wxdraw2d and wxdraw3d to create embedded 2D and 3D
plots. The related commands draw2d and draw3d will create the same plot in a GNUplot
pop-up window. The pop-up window is useful for manipulating 3D plots (we can move
the picture around with a mouse), but the embedded plots are more useful for printing
our work. In older versions of wxMaxima, it may be necessary to enter load(draw)$
before using the wxdraw2d and wxdraw3d commands.

Plots can be ammended with a host of attributes introduced gradually throughout the
text. We include a small sample of graphic objects and plot features below.

Example 0.3.1. Define f(x) = x2, then make a simple plot of f(x) on [−3, 3].

We begin this section by applying kill(all) to delete all the assignments wxMaxima is
currently remembering. In practice, we only need to use kill(all) if our previous
assignments are causing some kind of interference with a calculation. We use explicit to
plot the function because f(x) is stated explicitly as a function of x, then the domain is
listed alongside the function. We place several line breaks inside wxdraw2d to aid our
organization:

(%i1) kill(all)$

(%i1) f(x):=x^2$

(%i2) wxdraw2d(

explicit(f(x),x,-3,3)

);

Example 0.3.2. Plot the points [−3, 1] and [2, 5] on a grid for x-range [−10, 10] and
y-range [−10, 10]. Include a label above each point.

We use point_type=7 to make closed circles and points to list the desired points. label
is used to create the text of each label and attach it to the desired coordinates (in this
case, 1 unit above the actual points):

(%i3) wxdraw2d(

grid=true,
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xrange=[-10,10],

yrange=[-10,10],

point_type=7,

points([[-3,1],[2,5]]),

label(["[-3,1]",-3,2],["[2,5]",2,6])

);

Example 0.3.3. Plot a black vertical line x = 3, and plot the unit circle in red with
x-range [−4, 4] and y-range [−4, 4]. Include the x and y axes, a grid and a title.

This example is a good illustration of how easily a plot can grow in complexity. A vertical
line is not a function, so it must be defined parametrically. We tell wxMaxima to plot
many points (3, t) as t runs from −4 to 4. In addition, the equation of the unit circle
defines a curve implicitly : we can’t solve for y in terms of x. Finally, the unit circle will
be distorted if we don’t force the aspect ratio to be square using dimensions:

(%i4) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

dimensions=[600,600],

xrange=[-4,4],

yrange=[-4,4],

title="The unit circle and the line x=3.",

color=black,

parametric(3,t,t,-4,4),

color=red,

implicit(x^2+y^2=1,x,-1,1,y,-1,1)

);
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Example 0.3.4. Make a quick plot of the paraboloid z = x2 + y2 using wxdraw3d. In
addition, use draw3d to draw the paraboloid in a GNUplot window, then manipulate the
plot with a mouse.

(%i5) wxdraw3d(

explicit(x^2+y^2,x,-5,5,y,-5,5)

);
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0.4 Defining and Solving Equations

In wxMaxima, the symbol “=” is reserved for defining equations. Once an equation is
defined, we can use rhs and lhs to isolate the right and left sides. Many equations and
systems of equations can be solved using solve, but some equations can only be solved
with numerical approximations using find_root or another approximation.

Example 0.4.1. Assign the symbol EQN to the equation 3x− 6 = 6x+ 5, then solve the
equation “manually” by performing the usual algebraic operations to isolate x. Check
your answer by substituting this value of x into the left and right sides of the original
equation. Finally, check your answer again by using solve.

We run through the standard process for linear equations:

(%i1) EQN:3*x-6=6*x+5;

(%o1) 3*x-6=6*x+5

(%i2) %+6;

(%o2) 3*x=6*x+11

(%i3) %-6*x;

(%o3) -3*x=11

(%i4) %/-3;

(%o4) x=-11/3

We check our answer using subst:

(%i5) subst(-11/3,x,rhs(EQN));

(%o5) -17

(%i6) subst(-11/3,x,lhs(EQN));

(%o6) -17

Finally, we repeat the solution using solve:

(%i7) solve(EQN,x);

(%o7) [x=-11/3]

Example 0.4.2. Attempt to solve lnx = sinx using solve. What happens? Now
rephrase the problem in terms of finding a root of another function. Approximate the
solution using find_root.

First we attempt the naive solution, calling the equation EQN2:

(%i8) EQN2:log(x)=sin(x)$

solve(EQN2,x);

(%o9) [sin(x)=log(x)]

wxMaxima simply repeats the question, indicating a failure to find the solution (in fact,
solve can only solve some polynomial equations!). However, we realize that any solution
to lnx = sinx is also a solution of lnx− sinx = 0, so we can examine the function
f(x) = lnx− sinx and numerically approximate its roots.
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One complication of find_root is that we have to specify the interval on which the root
occurs, and the function must be defined on the interval we choose. We can choose an
interval by quickly sketching the function:

(%i10) wxdraw2d(

grid=true,

explicit(log(x)-sin(x),x,0,10)

);

We see a root somewhere on [2, 4]. Note: if we choose the interval [0, 4], find_root fails
because lnx is not defined at x = 0!

(%i11) find_root(log(x)-sin(x),2,4);

(%o11) 2.219107148913746

We obtain x ≈ 2.219 as the numerical solution to the equation.

Example 0.4.3. Solve the system of equations

{
2x− 3y = 5

3x+ y = 2
using solve. Plot both

equations implicitly and mark the intersection point in the plot.

(%i12) L1:2*x-3*y=5$

L2:3*x+y=2$

solve([L1,L2],[x,y]);

(%o14) [[x=1,y=-1]]

(%i15) wxdraw2d(

grid=true,

color=black,

implicit(L1,x,-2,2,y,-2,2),

implicit(L2,x,-2,2,y,-2,2),

color=red,

point_type=7,

points([[1,-1]])

);
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0.5 Sequences and Sums

0.5.1 Sequences

Sequences find a wide variety of applications, and we use them frequently in this text.
wxMaxima generates sequences using makelist or for-do. makelist offers the
advantage that we can call list elements later in the calculation, while for-do is much
more flexible and powerful.

Example 0.5.1. Use makelist to generate the sequence L = 1, 3, 5, . . . 51. Use
wxMaxima to isolate the tenth element of the sequence.

We use the formula 2n− 1 with n = 1 . . . 26 to generate the sequence:

(%i1) L:makelist(2*n-1,n,1,26);

(%o1) [1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,

37,39,41,43,45,47,49,51]

Now we call the tenth element of L:

(%i2) L[10];

(%o2) 19

Example 0.5.2. Use makelist to generate a sequence of 20 ordered pairs on the line
y = 2x for x = 0.0, 0.1, . . . , 2. Feed your list of ordered pairs into wxdraw2d.

We can generate the x values using the sequence 0.1k for k = 0, 1, . . . , 20. The output of
makelist is already in “list” form, so it is ready to feed into wxdraw2d:

(%i3) POINTS:makelist([0.1*k,2*(0.1*k)],k,0,20);

(%o3) [[0,0],[0.1,0.2],[0.2,0.4],[0.3,0.6],[0.4,0.8],[0.5,1.0],

[0.6,1.2],[0.7,1.4],[0.8,1.6],[0.9,1.8],[1.0,2.0],[1.1,2.2],

[1.2,2.4],[1.3,2.6],[1.4,2.8],[1.5,3.0],[1.6,3.2],[1.7,3.4],

[1.8,3.6],[1.9,3.8],[2.0,4.0]]

(%i4) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[-1,3],

yrange=[-1,5],

point_type=7,

color=red,

points(POINTS)

);
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Example 0.5.3. Use a for-do loop to generate the same sequence as Example 0.5.1.

When we program a for-do loop (also called simply a “do-loop”), we ask wxMaxima to
repeat a process until some ending point is reached. In this case, we ask wxMaxima to
assign x to 2n− 1 and print x, repeating the calculation for n = 1 . . . 26:

(%i5) (for n:1 thru 26 do

(x: 2*n-1,

print(x))

);

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51
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(%o5) done

Example 0.5.4. The Fibonacci sequence is defined by a recursive formula
fn = fn−1 + fn−2; that is, the next number is obtained by adding the previous two
numbers. If we start the sequence with 0, 1, . . . , the entire sequence is given by
0, 1, 1, 2, 3, 5, 8, . . . . Use a do-loop to generate the first twenty terms of the Fibonacci
sequence.

Our use of for-do is more substantial in this example: we have to repeat a calculation
several times and use the output of each step to compute the next step. We define the
two starting numbers fn−1 and fn−2 first, then the loop prints the next Fibonacci

number X, changes the (n− 1)
th

term to the (n− 2)
th

term and assigns the (n− 1)
th

term to X. Then the process is repeated 18 times for a total of 20 Fibonacci numbers.

(%i6) N_1:1$

N_2:0$

(%i8)

(for i:1 thru 18 do

(X:N_2+N_1,

print(X),

N_2:N_1,

N_1:X)

);

1

2

3

5

8

13

21

34

55

89

144

233

377

610

987

1597

2584

4181

(%o8) done
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0.5.2 Sums

wxMaxima computes sums using sum. The notation is very close to sigma notation:

Example 0.5.5. Use sum to compute the sum 2 + 4 + 6 + · · ·+ 50.

In sigma notation, the sum is written
∑25
n=1 2n, and the arguments of sum simply refer to

all the parts of this notation:

(%i9) sum(2*n,n,1,25);

(%o9) 650

Example 0.5.6. Find an algebraic formula for the sum 1 + 2 + · · ·+ n, then use a
substitution to obtain the sum of the first 100 natural numbers.

In sigma notation, we wish to compute
∑n
k=1 k. The classic formula is obtained using sum

followed by simpsum, then we substitute n = 100:

(%i10) sum(k,k,1,n),simpsum;

(%o10) (n^2+n)/2

(%i11) subst(100,n,%);

(%o11) 5050
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0.6 Application: Line Passing Through Two Given
Points

As a demonstration of the utility of symbolic calculation, we design a function to quickly
plot the line connecting two points.

Example 0.6.1. Create a function LINE(a,b,c,d,x) that computes the equation of a
line passing through the points (a, b) and (c, d). Set up your code so the simple
assignment of a, b, c, d will immediately produce a nice plot of the line and the two given
points. Apply your code to the points (−0.51,−3.47) and (7.12, 3.94).

First, we define each point as a function of two variables. The output of each function is
in the correct form to use as a point within wxdraw2d. Then we compute the slope
between the points as a function of all four variables:

(%i1) POINT1(a,b):=[a,b]$

POINT2(c,d):=[c,d]$

SLOPE(a,b,c,d):=(d-b)/(c-a)$

The next step is to plug into the point-slope formula y − y0 = m(x− x0) and solve for y
as a function of x. We use POINT1 as (x0, y0).

(%i4) LINE(a,b,c,d,x):=SLOPE(a,b,c,d)*(x-a)+b$

Finally, we make the assignments for a, b, c, d and set up wxdraw2d. Note that everything
remains general within wxdraw2d, so we can plot the line between any two points
immediately by making new assignments for a, b, c, d:

(%i5) a:-.51$

b:-3.47$

c:7.12$

d:3.94$

wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

color=black,

explicit(LINE(a,b,c,d,x),x,a-1,c+1),

color=red,

point_type=7,

points([[a,b],[c,d]])

);
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0.7 Module 0 Exercises

1. Define the expressions A =
√

3 and B = 5, then find decimal approximations for
A+B and A/B.

2. Define expressions A = x2 and B = ex. Substitute B for x in the formula for A, then
evaluate the resulting expression at x = 0.1 and obtain a decimal approximation.

3. Use trigexpand to find a formula for sin (x+ y) in terms of sinx, sin y, cosx and
cos y. Use your result to compute sin 5π

12 by using the fact that 5π
12 = π

6 + π
4 .

Re-calculate sin 5π
12 directly and use float to verify your answer.

4. Add and simplify: 2x2−x−6
x2−9 + x3−x2−4x+4

x2+5x+6 . Express your answer in factored form.

5. Solve the equation ax2 + bx+ c = 0 for x.

6. Make a plot of f(x) = sin (lnx)− 0.2 on [10, 30] including the x-axis. Use
find_root to approximate the solution of sin (lnx) = 0.2 on this interval. Verify
your answer by evaluating sin (lnx) at the value of x you found.

7. Define f(x) = x+ 2 and g(x) = x2. Find the intersections of these two curves, then
make a plot of both functions including the intersection points as closed circles.
Label each intersection point using decimal coordinates rounded to the second
decimal place.

8. Use makelist and for-do to generate the first thirty terms of the sequence
1, 12 ,

1
4 , . . . .

9. The recursive formula for a sequence is given by fn = 2fn−1 with a starting point of
f0 = 3. Use a do-loop to generate the first 10 terms of this sequence recursively (as
in Example 0.5.4). Once the sequence is written down, you can guess an explicit
formula for fn. Once you find this formula, use makelist to generate the same
sequence.

10. Use makelist to plot 40 circles centered at the origin with radii 0.1, 0.2, 0.3, . . . in a
single plot. This problem is tricky because your list must produce elements that
wxdraw2d understands: implicit and its proper arguments must be included with
each list element!

11. Any parabola can be written f(x) = ax2 + bx+ c. The parameters a, b, c completely
define the parabola. If you are given three points lying on an unknown parabola,
they generate a system of three equations in a, b, c. solve can quickly produce the
solution of this system. Write a solution similar to Example 0.6.1 to take any three
points and produce a plot of the points together with the parabola passing through
them. The proper syntax for solving a system of equations is
solve([eqn1,eqn2,eqn3],[var1,var2,var3]). Apply your code to the points
(−6.8,−5.5), (0.1, 6.7) and (3.2,−0.9).
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1.1 Polynomial and Rational Functions

1.1.1 Polynomial Functions

A polynomial function is a function of the form:

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

Plotting a polynomial function in wxMaxima is straightforward, but it is notable that the
factored form of the function can be useful for locating its zeros.

Example 1.1.1. Plot the function P (x) = x3 + x2 − 6x and identify its zeros.

(%i1) P:x^3+x^2-6*x$

(%i2) wxdraw2d(

xaxis=true,

yaxis=true,

grid=true,

title="A Cubic Polynomial",

explicit((P),x,-4,4)

);

It appears that the function P (x) has zeros at x = −3, x = 0, and x = 2. We can verify
these zeros by using wxMaxima to factor P (x):

(%i3) factor(P);

(%o3) (x-2)*x*(x+3)

Another option is to actually solve the equation P (x) = 0:

(%i4) solve(P=0,x);

(%o4) [x=-3,x=2,x=0]
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1.1.2 Rational Functions

A rational function is a function of the form:

f(x) =
P (x)

Q(x)

where P (x) and Q(x) are polynomials, and the domain is restricted to values of x for
which Q(x)6=0. We are usually interested in finding zeros and asymptotes of rational
functions.

Example 1.1.2. For the rational function Q(x) = x2−x−2
2x2−x−3 , find all asymptotes, zeros

and holes. Plot Q(x) along with all asymptotes, zeros and holes.

If we don’t indicate the y range to wxMaxima, the vertical scale of this graph is too large
for us to see the its essential features. To fix the problem, we use xrange and yrange to
explicitly define the window size.

(%i5) Q:(x^2-x-2)/(2*x^2-x-3);

(%o5) (x^2-x-2)/(2*x^2-x-3)

(%i6) wxdraw2d(

xaxis=true,

yaxis=true,

grid=true,

title="A Rational Function",

xrange=[-10,10],

yrange=[-10,10],

explicit((Q),x,-10,10)

);

The graph has one zero, one vertical asymptote and one horizontal asymptote. In order
to find the exact values of these features we will have to factor the numerator and
denominator of Q(x) as far as possible. The num and denom commands can extract the
numerator and denominator of Q(x) for factoring:

(%i7) factor(num(Q));

(%o7) (x-2)*(x+1)

(%i8) factor(denom(Q));

(%o8) (x+1)*(2*x-3)
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We notice that there is a common factor of (x+ 1) that cancels out, but it can’t be
completely ignored! Since the denominator of Q(x) vanishes at x = −1, Q(x) is undefined
there. We represent this as a hole in the graph; unfortunately wxMaxima does not make
the hole visible, but we can represent the hole decently by inserting a circle at the point
(−1, 0.6) in the graph.

With Q(x) simplified to x−2
2x−3 , we can quickly determine that the zero (where the

numerator is zero) is at x = 2 and the vertical asymptote (where the denominator is zero)
has the equation x = 3/2. Of course, we can coax wxMaxima into doing the algebra for
us if desired:

(%i9) R:ratsimp(Q);

(%o9) (x-2)/(2*x-3)

(%i10) solve(num(R)=0);

(%o10) [x=2]

(%i11) solve(denom(R)=0);

(%o11) [x=3/2]

We determine the horizontal asymptote by using the limit command in wxMaxima. We
will eventually study limits in much greater detail, but for now we just say that
limx→±∞Q(x) = L indicates there is a horizontal asymptote y = L. The limit simply
means that “Q(x) gets close to L as x becomes ‘large’ ”.

We compute the limits at infinity in wxMaxima and find that there is a horizontal
asymptote at y = 1/2.

(%i12) limit(Q,x,inf);

(%o12) 1/2

(%i13) limit(Q,x,-inf);

(%o13) 1/2

Finally, we put all the information together in a single graph. Note that the vertical
asymptote x = 1.5 must be defined parametrically as discussed in Module 0.

(%i14) wxdraw2d(

xaxis=true,

yaxis=true,

grid=true,

title="A Rational Function",

xrange=[-5,5],

yrange=[-5,5],

color=black,

explicit((Q),x,-5,5),

color=red,

line_type=dots,

explicit((0.5),x,-5,5),

parametric(1.5,t,t,-5,5),

point_type=6,

points([[-1,0.6]]),

point_type=7,
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points([[2,0]])

);
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1.2 Trigonometric Functions

1.2.1 The Basic Trig Functions

The basic trigonometric functions are defined as follows:

sinx is the y-coordinate of a point on the unit circle at an angle of x.

cosx is the x-coordinate of a point on the unit circle at an angle of x

tanx is the ratio
sin(x)

cos(x)

The angle, x, is measured in radians counterclockwise from the positive x-axis.

Example 1.2.1. Make a plot of the sine function on the interval [0, 4π]. Identify the
period and the first three zeros (roots) of the sine function.

(%i1) S:sin(x)$

(%i2) wxdraw2d(

xaxis=true,

yaxis=true,

grid=true,

title="The Sine Function",

xrange=[0,4*%pi],

yrange=[-1.5,1.5],

explicit((S),x,0,4*%pi)

);

We see that the sine function is a simple wave with a period of 2π ≈ 6.3. The zeros of the
function can be computed using "find_root" – unfortunately the command only gives us
numerical approximations for one root at a time on a closed interval. We will have to
eyeball the roots and construct closed intervals accordingly. The first three roots are
approximated as follows:

(%i3) find_root(S,0,1);

(%o3) 0.0

(%i4) find_root(S,2,4);

(%o4) 3.141592653589793
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(%i5) find_root(S,6,8);

(%o5) 6.283185307179586

We recognize that these are numerical approximations for 0, π, 2π, . . .

Example 1.2.2. Make a plot of the tangent function on the interval [0, 4π]. Identify the
period, the zeros (roots) and the equations of the vertical asymptotes.

(%i6) T:tan(x)$

(%i7) wxdraw2d(

xaxis=true,

yaxis=true,

grid=true,

title="The Tangent Function",

xrange=[0,4*%pi],

yrange=[-8,8],

explicit((T),x,0,4*%pi)

);

The tangent function has a period of only π ≈ 3.14. The roots occur when the numerator
sinx = 0, which we recall corresponds to x = 0, π, 2π, . . .. The tangent function has many
vertical asymptotes corresponding to the values of x for which the denominator cosx = 0.
For this example, we will just recall that cosx = 0 when x = π

2 , x = 3π
2 , . . . , which

provides our list of equations for vertical asymptotes.

Replotting the function with vertical asymptotes, we obtain:

(%i8) wxdraw2d(

xaxis=true,

yaxis=true,

grid=true,

title="The Tangent Function",

xrange=[0,4*%pi],

yrange=[-8,8],

color=black,

explicit((T),x,0,4*%pi),
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color=red,

line_type=dots,

parametric(%pi/2,t,t,-8,8),

parametric(3*%pi/2,t,t,-8,8),

parametric(5*%pi/2,t,t,-8,8),

parametric(7*%pi/2,t,t,-8,8)

);

1.2.2 Graphs of Sinusoidal Functions

A function of the form f(x) = A cos (Bx+ φ) + C or f(x) = A sin (Bx+ φ) + C is called
sinusoidal. The graph of a sinusoidal function is a simple wave.

The midline of a sinusoidal function is the line y = C: a horizontal line half-way between
the minimum and maximum values.

The amplitude of a sinusoidal function is given by A: the distance from the midline to
the maximum and minimum values of the function.

The period of a sinusoidal function is determined by B by the formula T = 2π
B . Period is

the smallest horizontal distance covered before the sinusoidal function begins to repeat
itself.

The phase shift of a sinusoidal function is given by φ. Phase shift is the fraction of a
period shift multiplied by 2π, where a negative value corresponds to a rightward shift, and
a postive value corresponds to a leftward shift.

Example 1.2.3. Plot f(x) = cosx, g(x) = cosx+ 1, and h(x) = cosx− 2 on the same
graph using red, blue and black, respectively. Include a key to identify each plot in the
graph.

(%i9) F:cos(x)$

G:cos(x)+1$

H:cos(x)-2$

(%i12) wxdraw2d(

xaxis=true,
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yaxis=true,

grid=true,

title="Three Cosines With Different Midlines",

key="y=cos(x)",

color="red",

explicit((F),x,-2*%pi,2*%pi),

key="y=cos(x)+1",

color="blue",

explicit((G),x,-2*%pi,2*%pi),

key="y=cos(x)-2",

color="black",

explicit((H),x,-2*%pi,2*%pi)

);

We see that the additive constant just shifts the midline up or down by the corresponding
number of units.

Example 1.2.4. Plot the three functions f1 = sinx, f2 = 2 sinx, and f3 = 3 sinx in red,
blue and black, respectively. Include a key to identify each plot in the graph.

(%i13) F1:sin(x)$

F2:2*sin(x)$

F3:3*sin(x)$

(%i16) wxdraw2d(

xaxis=true,

yaxis=true,

grid=true,

title="Three Sine Waves With Different Amplitudes",

key="y=sin(x)",

color=red,

explicit((F1),x,0,4*%pi),

key="y=2*sin(x)",

color=blue,

explicit((F2),x,0,4*%pi),

key="y=3*sin(x)",

color=black,

explicit((F3),x,0,4*%pi)

);
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Example 1.2.5. Plot f(x) = cosx and g(x) = cosπx on the same graph using black and
red, respectively. Include a key to identify each plot in the graph. Note the periods of
both functions and compare to the formula T = 2π

B .

(%i17) F:cos(x)$

G:cos(%pi*x)$

(%i19) wxdraw2d(

xaxis=true,

yaxis=true,

grid=true,

title="Two Cosines with Different Periods",

key="y=cos(x)",

color="black",

explicit((F),x,-2*%pi,2*%pi),

key="y=cos(%pi*x)",

color="red",

explicit((G),x,-2*%pi,2*%pi)

);

We see that the original cosine function f(x) = cosx has a period of 2π (a little more
than 6), while the new function g(x) = cos (πx) has a period of exactly 2. This agrees
with the formula T = 2π

B = 2π
π = 2.
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Example 1.2.6. Plot f(x) = cos (2πx) and g(x) = cos (2πx+ π
2 ) on the same graph

using black and red, respectively. Include a key to identify each plot in the graph. Note
the periods of both functions and verify the definition of phase shift.

(%i20) F:cos(2*%pi*x)$

G:cos(2*%pi*x+%pi/2)$

(%i22) wxdraw2d(

xaxis=true,

yaxis=true,

grid=true,

title="Two Cosines With Different Phase Shifts",

key="y=cos(2*%pi*x)",

color="black",

explicit((F),x,-1,1),

key="y=cos(2*%pi*x+%pi/2)",

color="red",

explicit((G),x,-1,1)

);

We see that f(x) = cos (2πx) is a cosine function with period 1, and g(x) = cos (2πx+ π
2 )

is a cosine function with period 1 that has been shifted to the left by 1
4 . This agrees with

the definition of phase shift, since π
2 is 1

4 of 2π: in this case a quarter of a period is simply
1
4 .
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1.3 Exponential Functions

An exponential function is a function of the form f(x) = a · bx or f(x) = a · ekx. We
convert between the two forms by using the relation k = ln b.

We are usually interested in the initial value (y-intercept) and the growth rate (as
determined by b or, equivalently, k). Simple exponential functions are asymptotic to the
x-axis.

Example 1.3.1. The functions f1(x) = 2x, f2(x) = 2 · 2x and f3(x) = 3 · 2x all have the
same growth rate but different initial values. Plot the functions in red, blue and black,
respectively. Include a key in your graph to indicate which function is which.

(%i1) F1:2^x$

F2:2*2^x$

F3:3*2^x$

(%i4) wxdraw2d(

xaxis=true,

yaxis=true,

grid=true,

xrange=[-3,3],

yrange=[-1,20],

title="Three Exponential Functions with Different Initial Values",

key="y=2^x",

color=red,

explicit((F1),x,-3,3),

key="y=2*2^x",

color=blue,

explicit((F2),x,-3,3),

key="y=3*2^x",

color=black,

explicit((F3),x,-3,3)

);
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Example 1.3.2. The functions f1(x) = ex, f2(x) = e2x and f3(x) = e3x all have the
same initial value but different growth rates. Plot the functions in red, blue and black,
respectively. Include a key in your graph to indicate which function is which.

(%i5) F1:exp(x)$

F2:exp(2*x)$

F3:exp(3*x)$

(%i6) wxdraw2d(

xaxis=true,

yaxis=true,

grid=true,

xrange=[-3,3],

yrange=[-1,20],

title="Three Exponential Functions with Different Growth Rates",

key="y=e^x",

color=red,

explicit((F1),x,-3,3),

key="y=e^(2x)",

color=blue,

explicit((F2),x,-3,3),

key="y=e^(3x)",

color=black,

explicit((F3),x,-3,3)

);
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1.4 Function Transformations

Function transformations are simple modifications of a function’s formula which result in
predictable changes to its graph.

Compared to f(x),

g(x) = f(−x) is reflected about the y-axis.
g(x) = −f(x) is reflected about the x-axis.
g(x) = cf(x) is stretched vertically by a factor of c.
g(x) = f(cx) is compressed horizontally by a factor of c.
g(x) = f(x+ c) is shifted left by c units.
g(x) = f(x) + c is shifted up by c units.

Example 1.4.1. Let f(x) = e0.5·x. Use wxMaxima to find explicit formulas for
g(x) = f(−x), h(x) = −f(x), i(x) = f(x+ 5) and j(x) = f(x) + 5. Plot f(x) in black and
the transformations in blue, red, green and yellow, respectively.

When we want to use function properties in wxMaxima, we need to define a function
(rather than an expression) by using ‘:=’ instead of ‘:’.

(%i1) F(x):=exp(0.5*x)$

(%i2) G(x):=F(-x)$

H(x):=-F(x)$

I(x):=F(x+5)$

J(x):=F(x)+5$

(%i6) G(x);

(%o6) %e^(-0.5*x)

(%i7) H(x);

(%o7) -%e^(0.5*x)

(%i8) I(x);

(%o8) %e^(0.5*(x+5))

(%i9) J(x);

(%o9) %e^(0.5*x)+5

We see that the formulas are given by g(x) = e−.5x, h(x) = −e0.5x, i(x) = e0.5(x+5), and
j(x) = e0.5x + 5. We plot the functions in a reasonable window size below:

(%i10) wxdraw2d(

xaxis=true,

yaxis=true,

grid=true,

title="Several Transformations of f(x)=exp(-0.5x)",

xrange=[-10,10],

yrange=[-10,10],

color=black,

key="f(x)",

explicit((F(x)),x,-10,10),

color=blue,

key="g(x)=f(-x)",
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explicit((G(x)),x,-10,10),

color=red,

key="h(x)=-f(x)",

explicit((H(x)),x,-10,10),

color=green,

key="f(x+5)",

explicit((I(x)),x,-10,10),

color=yellow,

key="f(x)+5",

explicit((J(x)),x,-10,10)

);

The midline, amplitude, period and phase shift of a sinusoidal function can be viewed as
arising from one or more function transformations on the sine or cosine functions. The
following example illustrates how a horizontal stretch/compression can change the period
of a sinusoid.

Example 1.4.2. Let f(x) = sinx. Plot f(x) together with g(x) = f(2x) with sensible
color coding and a key. Then plot f(x) and h(x) = f(0.5x) in a separate plot. Use the
interval [−4π, 4π] for both plots. Comment on the periods of all three functions.

(%i11)F(x):=sin(x)$

G(x):=F(2*x)$

H(x):=F(0.5*x)$

(%i14) wxdraw2d(

xaxis=true,

yaxis=true,

grid=true,

title="Horizontal Stretch and Compression of y=sin(x)",

key="f(x)",

color=black,

explicit((F(x)),x,-4*%pi,4*%pi),

key="f(2x)",

color=blue,

explicit((G(x)),x,-4*%pi,4*%pi)

);
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We see that g(x) = f(2x) has half the period of the original function: it has been
compressed horizontally by a factor of 2 in agreement with the formula T = 2π

B .

(%i15) wxdraw2d(

xaxis=true,

yaxis=true,

grid=true,

title="Horizontal Stretch and Compression of y=sin(x)",

key="f(x)",

color=black,

explicit((F(x)),x,-4*%pi,4*%pi),

key="f(0.5*x)",

color=red,

explicit((H(x)),x,-4*%pi,4*%pi)

);

We see that h(x) = f(0.5x) has twice the period of the original function: it has been
stretched horizontally by a factor of 2 in agreement with the formula T = 2π

B .
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1.5 Parity of Functions

Parity is used to refer in general to the “evenness” or “oddness” of a function. The
algebraic definitions are as follows:

f(x) is an even function if f(−x) = f(x).

f(x) is an odd function if f(−x) = −f(x).

It is important to realize that the algebraic definitions correspond to useful symmetries in
the graph of a function. In terms of function transformations, we say that the graph of an
even function is the same as the reflection about the y axis, and the graph of an odd
function is the same as the combined reflections of the graph about the x and y axes.

Example 1.5.1. Use wxMaxima to verify algebraically that f(x) = 1
x2−4 is an even

function. Plot f(x) and comment on the symmetry of the graph.

(%i1) f(x):=1/(x^2-4)$

(%i2) f(-x);

(%o2) 1/(x^2-4)

We see that the formula for f(x) is exactly the same as the formula for f(−x), so the
function is even. Next, we produce a plot of f(x) in a reasonable window:

(%i3) wxdraw2d(

xaxis=true,

yaxis=true,

xrange=[-5,5],

yrange=[-10,10],

grid=true,

title="An Even Rational Function",

color=black,

explicit((f(x)),x,-5,5)

);

Like all even functions, the graph of f(x) is symmetric about the y-axis.
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Example 1.5.2. Use wxMaxima to verify algebraically that f(x) = sinx is an odd
function. Plot f(x) and comment on the symmetry of the graph.

(%i4) f(x):=sin(x)$

(%i5) f(-x);

(%o5) -sin(x)

We see that the formula for f(−x) is − sinx. The function is odd because f(−x) = −f(x).

(%i6) wxdraw2d(

xaxis=true,

yaxis=true,

xrange=[-5,5],

yrange=[-2,2],

grid=true,

title="An Odd Trigonometric Function",

color=black,

explicit((f(x)),x,-5,5)

);

Like all odd functions, f(x) = sinx is “symmetric about the origin”; i.e., a combination of
reflections about the x and y axes yields the same graph. The symmetry is equivalent to
a 180◦ rotational symmetry about the origin.
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1.6 Algebraic Combinations of Functions

Functions f(x) and g(x) can be algebraically combined in a variety of ways to produce a
new function, h(x):

A sum or difference: h(x) = f(x)± g(x)

A linear combination: h(x) = af(x) + bg(x)

A product: h(x) = f(x)g(x) = (f · g)(x)

A quotient: h(x) =
f(x)

g(x)
, provided g(x) 6= 0

To lie in the domain of a function combination, a value of x must lie in the domain of
both f(x) and g(x). In all cases, the combination happens “point-by-point”.

Example 1.6.1. Define f(x) = 4− x2 and g(x) = x, and h(x) = f(x) + g(x). Make a
plot of all three functions, with f(x) and g(x) shown in grey and h(x) shown in black. In
addition, plot the points (1, f(1)), (1, g(1)) and (1, h(1)) as solid circles and comment on
the “point-by-point” addition of functions.

(%i1) f(x):=4-x^2$

g(x):=x$

h(x):=f(x)+g(x)$

(%i4) wxdraw2d(

xaxis=true,

yaxis=true,

grid=true,

title="Two Functions, f(x) and g(x) and Their Sum, h(x)",

xrange=[-10,10],

yrange=[-10,10],

color=grey,

key="f(x)",

explicit((f(x)),x,-10,10),

key="g(x)",

explicit((g(x)),x,-10,10),

key="h(x)",

color=black,

explicit((h(x)),x,-10,10),

key="",

color=red,

point_type=7,

points([[1,f(1)],[1,g(1)],[1,h(1)]])

);
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The highlighted points make it clear how function addition works: f(1) = 3, g(1) = 1, so
h(1) is just 3 + 1 = 4. It is always possible to quickly sketch sums, differences and so on
by just looking at the plots of the participant functions point-by-point.

Example 1.6.2. Define f(x) = sin (πx) and g(x) = cos (πx)− 2. Now define h(x) as a
linear combination h(x) = 2f(x) + 3g(x). Make a plot of all three functions, with f(x) and
g(x) shown in grey and h(x) shown in black. Comment on the period of each function.

(%i5) f(x):=sin(%pi*x)$

g(x):=cos(%pi*x)-2$

h(x):=f(x)+g(x)$

(%i8) wxdraw2d(

xaxis=true,

yaxis=true,

grid=true,

title="Two Functions, f(x) and g(x) and Their Sum, h(x)",

xrange=[-4,4],

yrange=[-6,6],

color=grey,

key="f(x)",

explicit((f(x)),x,-4,4),

key="g(x)",

explicit((g(x)),x,-4,4),

key="h(x)",

color=black,

explicit((h(x)),x,-4,4)

);
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Remarkably, we see that the linear combination of two sinusoidal functions f(x) and g(x)
(both of period 2) results in another sinusoidal function h(x) (also with period 2). As
discussed in the Exercises, this only works if the participant functions have the same
period.

Example 1.6.3. Define functions f(x) = e−0.4x, g(x) = 5 cos (4πx), and
h(x) = f(x) · g(x). Make a plot of all three functions, with f(x) and g(x) shown in grey
and h(x) shown in black. How do the zeros of h(x) compare to the zeros of f(x) and g(x)?

(%i9) f(x):=%e^(-0.4*x)$

g(x):=5*cos(4*%pi*x)$

h(x):=f(x)*g(x)$

(%i12)wxdraw2d(

xaxis=true,

yaxis=true,

grid=true,

title="Product of a Sinusoid and a Decaying Exponential",

xrange=[0,10],

yrange=[-5,5],

color=grey,

key="f(x)",

explicit((f(x)),x,0,10),

key="g(x)",

explicit((g(x)),x,0,10),

key="h(x)",

color=black,

explicit((h(x)),x,0,10)

);
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f(x) is never zero, and g(x) has many zeros occuring periodically. Since
h(x) = f(x) · g(x), it must vanish whenever f(x) = 0 or g(x) = 0, so it has exactly the
same zeros as the cosine function.

We can refer to h(x) as a “sinusoidal function with a decaying amplitude”. This type of
function occurs frequently in physical applications. We notice that g(x) repeatedly hits a
minimum value of -5 and a maximum value of +5, and at these special points,
h(x) = ±5e−.4x. If we plot these two functions i(x) = 5e−.4x and j(x) = −5e−.4x they
provide an upper and lower bound called an envelope:

(%i13) i(x):=5*f(x)$

j(x):=-5*f(x)$

(%i15) wxdraw2d(

xaxis=true,

yaxis=true,

grid=true,

title="Decaying Sinusoid With its Envelope",

xrange=[0,10],

yrange=[-5,5],

color=black,

key="5e^(-.4x)*cos(4pi*x)",

explicit((h(x)),x,0,10),

color=red,

key="Upper Bound",

explicit((i(x)),x,0,10),

key="Lower Bound",

explicit((j(x)),x,0,10)

);
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1.7 Function Compositions

A composition of two functions occurs when the output of one function is used as the
input for another function. Function compositions have a special notation:

(f ◦ g)(x) = f(g(x))

Practically, this just means that we replace x with g(x) in the formula for f(x).

Example 1.7.1. For the functions f(x) = 2x+ 1 and g(x) =
√
x, use wxMaxima to

compute (f ◦ g)(x) and (g ◦ f)(x). Compute (f ◦ g)(−0.3) and (g ◦ f)(−0.3) and comment
on the results.

(%i1) f(x):=2*x+1$

g(x):=sqrt(x)$

(%i3) f(g(x));

(%o3) 2*sqrt(x)+1

(%i4) g(f(x));

(%o4) sqrt(2*x+1)

We see that the formulas are different: (f ◦ g)(x) = 2
√
x+ 1 while (g ◦ f)(x) =

√
2x+ 1.

Now we check the compositions at x = −0.3:

(%i5) f(g(-0.3));

(%o5) 1.095445115010332*%i+1

(%i6) g(f(-0.3));

(%o6) 0.63245553203368

(f ◦ g)(−0.3) is complex because we evaluated a square root at a negative argument,
while (g ◦ f)(−0.3) does not have the same problem. This is a good reminder that the
domain of a composition must be evaluated carefully. If desired, we can find the domain
of each composition by determining the values of x which correspond to non-negative
numbers within the square root sign.

Example 1.7.2. Express each of the following functions i(x) as a composition of two or
three simpler functions f(x), g(x) and possibly h(x). In each case, use wxMaxima to
verify that (f ◦ g)(x) = i(x) or (f ◦ g ◦ h)(x) = i(x)

a. i(x) = 2e3x
2+1 b. i(x) =

1

tan
√
x

For part a., we see that i(x) is just like 2ex except the x has been replaced by 3x2 + 1.
Thus, g(x) = 3x2 + 1 and f(x) = 2ex. Checking with wxMaxima, we obtain:

(%i7) f(x):=2*%e^x$

g(x):=3*x^2+1$

i(x):=f(g(x))$

(%i8) i(x);

(%o8) 2*%e^(3*x^2+1)
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For part b., we see that tan
√
x is already a composition of two functions, then a third

function f(x) = 1
x is required to get the reciprocal:

(%i9) f(x):=1/x$

g(x):=tan(x)$

h(x):=sqrt(x)$

i(x):=f(g(h(x)))$

(%i10) i(x);

(%o10) 1
tan
√
x
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1.8 Function Inverses

We often use x to indicate a domain element, y to indicate a range element and y = f(x)
to indicate a rule connecting domain elements to range elements. In order to be a
function, this rule must connect each domain element to only one range element (this is
sometimes called the “vertical line test”).

A function is called one-to-one if each range element is connected to only one domain
element; i.e., each y is connected to only one x. If a function is one-to-one, an inverse
function can be defined which takes the original range elements as “inputs” and delivers
the original domain elements as “outputs”. If we solve the original equation y = f(x) for
x, then we automatially obtain a formula for the inverse function (as a function of y), and
the notation for this function is f−1:

If y = f(x), then x = f−1(y).

It is always true that f−1(f(x)) = x and f(f−1(y)) = y.

In the case that a function is not one-to-one, it might be useful to introduce a domain
restriction to force the function to be one-to-one. That is, we remove x values from the
domain until each y value is connected to only one x value. For example, the basic
trigonometric functions have “agreed upon” domain restrictions in order to make them
invertible. This convenience comes at a price: sometimes we have to think carefully about
which x value we are really trying to obtain when applying an inverse trigonometric
function, and we may have to “manually” convert to an x value outside the restricted
domain.

Sometimes we wish to plot f−1 as a function of x instead of y; that is, we plot
y = f−1(x). By making this notational change, we are calling the “original” range
elements of our function “x” instead of “y”, and we are calling the “original” domain
elements of our function “y” instead of “x”. As a consequence, every ordered pair in the
graph of f−1(x) has its coordinates “swapped” when compared to the graph of f(x). The
coordinate swap amounts to a reflection of f(x) about the line y = x.

Example 1.8.1. Define the function f(x) = x3 in wxMaxima and use a graph to
establish that the function is one-to-one. Solve y = x3 for x in order to find the formula
for f−1(y), then define f−1(x) as a new function in wxMaxima. Verify that the
compositions f ◦ f−1 and f−1 ◦ f behave properly. Finally, make a plot of f(x), f−1(x)
and y = x to verify that the f−1(x) is a reflection of f(x) about y = x.

(%i1) F(x):=x^3$

(%i2) wxdraw2d(

xaxis=true,

yaxis=true,

grid=true,

title="y=x^3",

explicit((F(x)),x,-2,2)

);
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We can see that the function is one-to-one because each value of y is connected to only
one value of x. Another way to say it is that any horizontal line only crosses the graph at
one point. Now we use wxMaxima to find a formula for the inverse:

(%i3) F:y=x^3$

(%i4) solve(F,x);

(%o4) [x=((sqrt(3)*%i-1)*y^(1/3))/2,x=-((sqrt(3)*%i+1)*y^(1/3))/2,x=y^(1/3)]

wxMaxima finds three solutions for x, but we can ignore the complex solutions. We see
that the real solution is x = 3

√
y, so f−1 is the cubed root function. Next, we can verify

that the compositions of f and f−1 work as promised:

(%i5) F(x):=x^3$

Finv(y):=y^(1/3)$

(%i6) F(Finv(y));

(%o6) y

(%i7) Finv(F(x));

(%o7) x

It was not strictly necessary to define f−1 as a function of y, but it is a good reminder
that the inverse function operates on range elements of f . Finally, we produce the plot
(note the use of the dimensions attribute to make it square for better illustration of the
reflection):

(%i8) wxdraw2d(

dimensions=[600,600],

xaxis=true,

yaxis=true,

xrange=[-8,8],

yrange=[-8,8],

grid=true,

title="y=x^3 and its Inverse",

color=black,

explicit((F(x)),x,-8,8),

color=grey,

explicit((Finv(x)),x,-8,8),

color=red,

line_type=dots,

explicit((x),x,-8,8)

);
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We see that f and f−1 are reflections about the line y = x as expected.

Example 1.8.2. Define f(x) = sinx. Plot f(x) together with y = 0.9. How many times
do these curves intersect? What does this imply about the invertibility of f(x)? Find
decimal approximations for at least two of the intersections. Now produce the same plot
with f(x) = sinx restricted to the “agreed-upon” domain [−π2 ,

π
2 ] . Comment on the

invertibility of the resulting function. Use wxMaxima to find a formula for the inverse
function, then plot this function together with the restricted f(x).

(%i9) f(x):=sin(x)$

(%i10) wxdraw2d(

xaxis=true,

yaxis=true,

xrange=[-2*%pi,2*%pi],

yrange=[-1.5,1.5],

grid=true,

title="y=sin(x) and y=0.9",

color=black,

explicit((f(x)),x,-2*%pi,2*%pi),

line_type=dots,

explicit(0.9,x,-2*%pi,2*%pi)

);
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We see that the graphs intersect in several places (in fact, there are infinitely many
intersections). There are many x values connected to the single y value 0.9, so f(x) is not
one-to-one, therefore not invertible. Of course, this is true for all the other values in the
range as well.

We can find approximations to the two intersections on [0, 3] by using wxMaxima to solve
on an interval. We use find_root to find the zeros of the function sin(x)− 0.9. Wherever
this function is zero, we have a solution to sin(x) = 0.9. We have to eyeball an interval for
each intersection, making sure to capture only one intersection on each interval:

(%i11) find_root(sin(x)-0.9,0,1.9);

(%o11) 1.119769514998634

(%i12) find_root(sin(x)-0.9,1.9,3);

(%o12) 2.021823138591159

We reproduce the same plot with the standard domain restriction for the sine function:

With the domain restriction to [−π2 ,
π
2 ], we see that each y value of f(x) is covered

exactly once, so the restricted function is one-to-one, therefore invertible. In particular,
there is only one x value for which sin(x) = 0.9.

Now we use wxMaxima to solve for f−1(y):

(%i13) solve(y=f(x),x);

solve: using arc-trig functions to get a solution.

Some solutions will be lost.

(%o14) [x=asin(y)]

wxMaxima is telling us that f−1(y) = sin−1 y. asin is wxMaxima’s notation for arcsin (a
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synonym for sin−1). wxMaxima has also pointed out that “some solutions will be lost”
due to the implied domain restriction of the inverse sine function.

Finally, we can plot the restricted function f(x) together with its inverse to observe the
expected symmetry:

(%i15) wxdraw2d(

dimensions=[600,600],

xaxis=true,

yaxis=true,

xrange=[-1.6,1.6],

yrange=[-1.6,1.6],

grid=true,

title="y=sin(x) (restricted to [-pi/2,pi/2]) its inverse",

color=black,

explicit((f(x)),x,-%pi/2,%pi/2),

line_type=dots,

explicit(asin(x),x,-1,1)

);

Again, we observe the symmetry about the line y = x.

Example 1.8.3. Like the sine function, the standard domain restriction for the tangent
function is [−π2 ,

π
2 ]. Solve the equation tanx = 0.5 by applying the inverse tangent

function, subject to the condition that x is somewhere on the interval [π, 2π]. In order to
find the correct value of x, you will have to use the periodicity of the tangent function to
“manually” convert the answer given by the inverse tangent function. Make a plot of
y = tanx and y = 0.5 to illustrate the relationship between the two values of x.

We begin by simply using wxMaxima’s atan command to solve the equation (an
alternative is to use find_root as we did in the last example):
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(%i16) atan(0.5);

(%o16) 0.46364760900081

This is certainly not on the interval [π, 2π], so we need to “manually” find the desired
solution. To get a sense for where the solution may be, we make a plot of y = tanx and
y = 0.5 and look for intersections:

(%i17) wxdraw2d(

xaxis=true,

yaxis=true,

yrange=[-2,2],

xrange=[-6,6],

grid=true,

title="y=tan(x) and y=0.5",

color=black,

explicit((tan(x)),x,-6,6),

color=red,

explicit(0.5,x,-6,6)

);

We see that the locations of all the intersections occur with the same periodicity of the
tangent function itself. To find the desired solution, we simply add π to the previous
solution. To get a decimal approximation we use the float command, and to check our
answer we evaluate the tangent function once again (recall that % means “previous
output”):

(%i18) atan(0.5)+%pi;

(%o18) %pi+0.46364760900081

(%i19) float(%);

(%o19) 3.605240262590599

(%i20) tan(%);

(%o20) 0.5
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1.9 Module 1 Exercises

1. Plot the rational function f(x) = x2−2x+1
3x3−2 together with all horizontal and vertical

asymptotes (use limit to identify the horizontal asymptote). Remember that the
vertical asymptote must be defined parametrically as shown in Example 1.1.2.

Note: When you algebraically search for the vertical asymptote, you will find some
extraneous solutions (complex numbers), but the real solution will also be included
in the list.

2. Plot a sine function with period π, amplitude 2.5, midline y = 1.5 with a positive
(leftward) phase shift equal to 1/3 the period.

3. Plot f(x) = cosx on [0, 4π] and use find_root to find decimal approximations to
all the roots on this interval. What are the exact values of the roots?

4. Plot the functions f(x) = ex, g(x) = xe and h(x) = xx on the interval [0, 4]. Which
function grows the fastest in the long-run? The slowest? Without doing any
calculations, write down the intersection point for the three graphs.

5. What minimum positive phase shift is required to transform a simple sine function
into a cosine function? Once you have chosen this value of φ, make a plot of
f(x) = sin (x+ φ) to verify that the cosine function is obtained.

6. The trigonometric functions secx, cscx and cotx are defined as reciprocals of the
basic trigonometric functions:

secx =
1

cosx
cscx =

1

sinx
cotx =

1

tanx
Make three different plots to explore the relationship between each function and its
reciprocal. Each plot should contain the basic trigonometric function (sin, cos or
tan) as a dotted red line and the reciprocal function (csc, sec or cot) as a solid black
line. Comment on the relationship between the zeros of one function and the
vertical asymptotes of the other.

7. Define the function f(x) = x2 − 5x. Define g1(x) = f(−x) and h1(x) = g1(x+ 3);
that is, perform a horizontal reflection followed by a horizontal shift. Plot all three
of these functions in the same window.

Now define g2(x) = f(x+ 3) and h2(x) = g2(−x); that is, perform the same
horizontal shift before the same horizontal reflection. Plot all three of these
functions in the same window.

Comment on the importance of order for the two transformations.

8. Using the same function f(x) as the last exercise, define g1(x) = 2f(x) and
h1(x) = g1(−x) and make a plot of all three functions in the same window.

Now define g2(x) = f(−x) and h2(x) = 2g2(x) and make a plot of all three
functions in the same window.

Does the order of the transformations matter in this case? When do you think order
matters, in general?

9. Verify algebraically that f(x) = e−x
2

is an even function. Make a plot of f(x) and
verify that it has the correct symmetry.

51



10. Define f(x) = x3 and g(x) = x2 + 2x− 3 and h(x) = f(x)
g(x) . Use wxMaxima to

identify the values of x that are not in the domain of h(x). Plot the function h(x)
together with the vertical asymptotes.

11. Define f(x) = e−0.1x
2

and g(x) = 4 cos 3πx. Plot h(x) = f(x) · g(x) along with the
two functions that form the envelope, as in Example 1.6.3. Show h(x) in black and
the envelope in red lines. Choose a window that clearly illustrates why h(x) is
sometimes called a “wave packet”.

12. The natural log function, lnx is the inverse of the natural exponential function ex.
Algebraically verify that these two functions are inverses, then make a plot of both
functions along with the line y = x.

13. Find decimal approximations for all solutions to cosx = 0.7 on [0, 2π]. Include a
plot that shows all the solutions as the intersections of two curves. Finally, use the
inverse cosine function to solve the equation, then figure out how to “manually”
obtain the second solution from the first (it is not as simple as shifting the solution
by one period!). Note: the “agreed-upon” domain restriction for the cosine function
is [0, π].

14. Find decimal approximations for the intersections of the inverse tangent function
tan−1(x) and the unit circle. Hint: the unit circle will have to be broken into two
semi-circles (the upper and lower half) in order to pass the “vertical line test”.
Make a plot showing the intersections.

15. Any function f(x) can be decomposed into even and odd parts by using the fact
that f(x) = 1

2 [f(x) + f(−x)] + 1
2 [f(x)− f(−x)] (the first term is even and the

second is odd). Define the function f(x) = ex and define E(x) = 1
2 [f(x) + f(−x)]

and O(x) = 1
2 [f(x)− f(−x)]. Verify algebraically that E(x) is even and O(x) is

odd. Finally, produce plots of E(x) and O(x) to verify that they have the correct
symmetry. E(x) and O(x) actually have special names – do a little research and
write down the names of these special functions.

16. As discussed in Example 1.6.2, a linear combination of two sinusoidal functions with
the same period results in another sinusoidal function with the same period. If we
combine two sinusoidal functions with different periods, the result is no longer
sinusoidal. Define f(x) = sin 4x, g(x) = cosx, and h(x) = 3f(x)− g(x). Plot the
three functions with h(x) shown in black and the others shown in grey. What are
the periods of f(x) and g(x)? What is the period of h(x)?

17. Based on the last exercise, formulate a general rule to predict the period of a linear
combination of sinusoidal functions. Does your rule work for the functions
f(x) = sin 2x and g(x) = sin 3x? Produce a plot to test your rule, then adjust the
rule if necessary.

18. Using the interval [0, 4], find a function composition that results in a wave that
“wiggles” faster as x gets larger. Make a nice plot of your function.
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2.1 Using Sequences to Approximate Limits

The informal definitions of limits are given as follows:

limx→a f(x) = L means “f(x) becomes arbitrarily close to L as x becomes arbitrarily
close to a.”

limx→a± f(x) = L means “f(x) becomes arbitrarily close to L as x becomes arbitrarily
close to a from the right/left (that is, for x > a or x < a).”

limx→a± f(x) = ±∞ means “f(x) becomes arbitrarily large and positive/negative as x
becomes arbitrarily close to a from the right/left.”

limx→±∞ f(x) = L means “f(x) becomes arbitrarily close to L as x becomes arbitrarily
large and positive/negative”

We can explore these ideas numerically by using wxMaxima to evaluate f(x) for a
sequence of x-values that becomes closer and closer to the value of interest. In the
following examples, we use for-do loops (also called simply “do-loops”) to generate the
sequences of x and f(x) values and print the results in tabular form. Several types of
sequences are illustrated, but the most important thing is that x approaches the value of
interest.

Example 2.1.1. Define f(x) = 1
x2 , then evaluate each of the following limits by using a

do-loop to generate an appropriate sequence of ordered pairs. Produce a plot of f(x) and
comment on how it relates to the limits you have computed.

a. limx→0+ f(x) b. limx→2− f(x) c. limx→+∞ f(x)

a. For this limit, we will use the sequence of x values .1, .01, .001, . . . , 10−10. Note how
the do-loop is constructed to yield this sequence: a formula is defined as 1

10i , then we run
i from 1 through 10. There are some extra quotation marks and commas used to create
extra spaces in the printout. Although wxMaxima doesn’t make a nice table for us, the
results are at least readable:

(%i1) F(x):=1/(x^2)$

(%i2) (print("x "," "," "," f"),

for i:1 thru 10 do

(x: 1/(10^i),

f: F(x),

print(x,"","",f))

);
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x f

1/10 100

1/100 10000

1/1000 1000000

1/10000 100000000

1/100000 10000000000

1/1000000 1000000000000

1/10000000 100000000000000

1/100000000 10000000000000000

1/1000000000 1000000000000000000

1/10000000000 100000000000000000000

(%o2) done

It appears that f(x) is growing without bound as x approaches 0 from the right, so we
conclude that limx→0+ f(x) =∞

b. For this limit, we use the sequence 1.9, 1.99, . . . , 1.9999999999, which is obtained using
the formula 2− 1

10i . We also use float to tell wxMaxima to give us decimal
approximations (otherwise the exact fraction output makes it hard to see what’s going
on):

(%i3) (print("x "," "," "," f"),

for i:1 thru 10 do

(x: float(2-1/(10^i)),

f: float(F(x)),

print(x,"","",f))

);

x f

1.9 0.27700831024931

1.99 0.25251887578596

1.999 0.25025018762508

1.9999 0.25002500187513

1.99999 0.25000250001875

1.999999 0.25000025000019

1.9999999 0.250000025

1.99999999 0.2500000025

1.999999999 0.25000000025

1.9999999999 0.250000000025

(%o3) done

We see that f(x) is getting closer and closer to 0.25 = 1
4 as x gets closer and closer to 2

from the left. We conclude that limx→2− f(x) = 1
4 .

c. For this limit, we will use the sequence 10, 100, . . . , 1010, which is obtained using the
formula 10i:

(%i4) (print("x "," "," "," f"),

for i:1 thru 10 do

(x:(10^i),
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f: float(F(x)),

print(x,"","",f))

);

x f

10 0.01

100 1.0*10^-4

1000 9.9999999999999995*10^-7

10000 1.0*10^-8

100000 1.0*10^-10

1000000 9.9999999999999998*10^-13

10000000 1.0*10^-14

100000000 9.9999999999999998*10^-17

1000000000 1.0000000000000001*10^-18

10000000000 9.9999999999999995*10^-21

(%o4) done

We see that f(x) gets very small as x gets large and positive, so we conclude that
limx→∞ f(x) = 0.

Finally, we graph the function f(x) = 1
x2 :

(%i5) wxdraw2d(

xaxis=true,

yaxis=true,

grid=true,

xrange=[-10,10],

yrange=[-1,9],

title="f(x)=1/x^2",

color=black,

explicit((F(x)),x,-10,10)

);

We see that f(x) grows without bound as x approaches zero from the right, f(x)
approaches 1

4 as x approaches 2 from the left and f(x) approaches 0 as x grows large and
positive.
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Example 2.1.2. Define f(x) = sin 1
2x then evaluate each of the limits limx→0+ f(x) and

limx→∞ f(x) by using a do-loop to generate an appropriate sequence of ordered pairs.
Produce a plot of f(x) and comment on how it relates to the limits you have computed.

This time, we will use the sequence 0.20, 0.19, . . . , 0.01 by using the formula .21− .01i and
running i from 1 to 20.

(%i6) F(x):=sin(1/(2*x))$

(%i7) (print("x "," "," "," f"),

for i:1 thru 20 do

(x: float(0.21-.01*i),

f: float(F(x)),

print (x, "","",f))

);

x f

0.2 0.59847214410396

0.19 0.48818920886648

0.18 0.35584199140107

0.17 0.19907720062779

0.16 0.016591892229347

0.15 -0.19056796287549

0.14 -0.4167216517535

0.13 -0.64769956634402

0.12 -0.85475260723884

0.11 -0.98609877449093

0.1 -0.95892427466314

0.09 -0.66510151497882

0.08 -0.033179216547556

0.07 0.75762841539272

0.06 0.88729410809469

0.05 -0.54402111088937

0.04 -0.066321897351194

0.03 -0.81844725315795

0.02 -0.13235175009776

0.01 -0.26237485370384

(%o8) done

We see no discernible pattern in the values of f(x) as x gets closer to 0, so we conclude
that the limit limx→0+ f(x) does not exist.

To evaluate the limit at infinity, we use the sequence 20, 40, 80, . . . , 10 ∗ 210 by using the
formula 10 · 2i and running i from 1 to 10:

(%i8) (print("x "," "," "," f"),

for i:1 thru 10 do

(x: float(10*2^i),

f: float(F(x)),

print (x, "","",f))

);
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x f

20.0 0.024997395914712

40.0 0.01249967448171

80.0 0.0062499593099753

160.0 0.0031249949137395

320.0 0.0015624993642172

640.0 7.8124992052714282*10^-4

1280.0 3.9062499006589261*10^-4

2560.0 1.9531249875823659*10^-4

5120.0 9.7656249844779578*10^-5

10240.0 4.8828124980597446*10^-5

(%o9) done

We see that the values of f(x) are getting closer and closer to zero, so we conclude that
limx→∞ sin 1

2x = 0

Finally, we produce a plot of f(x) to see how our limits square with the plot of sin 1
2x :

(%i9) wxdraw2d(

xaxis=true,

yaxis=true,

grid=true,

xrange=[-10,10],

yrange=[-1,1],

title="f(x)=sin(1/(2x))",

color=black,

explicit((F(x)),x,-10,10)

);

We see the horizontal asymptote at the x-axis, indicating that limx→∞ sin 1
2x = 0. We

also see that there is a lot of activity jammed up near the y-axis, so we produce a second
plot to highlight this interesting behavior.

(%i10) wxdraw2d(

xaxis=true,

yaxis=true,

grid=true,

xrange=[0,.1],

yrange=[-1,1],
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title="f(x)=sin(1/(2x))",

color=black,

explicit((F(x)),x,-10,10)

);

We see that f(x) just keeps oscillating faster as x gets closer to zero. limx→0 f(x) doesn’t
exist because f(x) never gets closer to a single value as x gets closer to 0.

59



2.2 wxMaxima’s Limit Commands

The limit command is used to compute left, right and ordinary limits in wxMaxima (the
ordinary limit exists if the right and left limits both have the same value).

Example 2.2.1. Define the function f(x) = 3x−5√
x2

. Compute the limits at ±∞, and

compute the left and right limits at the vertical asymptote. Use your results to make a
plot of f(x) together with all asymptotes plotted in red.

We see that the denominator vanishes (but the numerator does not) at x = 0, so that
should be the location of the vertical asymptote. Note that inf means ∞, minf means
−∞, minus indicates a limit from the left, and plus indicates a limit from the right.

(%i1) f(x):=(3*x-5)/sqrt(x^2)$

(%i2) limit(f(x),x,minf);

(%o2) -3

(%i3) limit(f(x),x,inf);

(%o3) 3

(%i4) limit(f(x),x,0,minus);

(%o4) -inf

(%i5) limit(f(x),x,0,plus);

(%o5) -inf

The limits at ±∞ indicate that f(x) has two horizontal asymptotes, y = −3 and y = +3.
The left and right limits at x = 0 are both −∞, so there is a vertical asymptote there.
The two one-sided limits agree at x = 0, so we can conclude the ordinary limit exists and
should evaluate to −∞ as well:

(%i6) limit(f(x),x,0);

(%o6) -inf

Finally, we plot f(x) with all its asymptotes:

(%i7) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

title="f(x)=(3x-5)/sqrt(x^2)",

xrange=[-10,10],

yrange=[-25,5],

color=black,

explicit((f(x)),x,-10,10),

color=red,

line_type=dots,

explicit(3,x,-10,10),

explicit(-3,x,-10,10),

parametric(0,t,t,-25,5)

);
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Example 2.2.2. Compute the limits at ±∞ for the function f(x) = ex, then plot f(x)
to verify that the function behaves as indicated by the limits.

(%i8) f(x):=%e^(x)$

(%i9) limit(f(x),x,minf);

(%o9) 0

(%i10) limit(f(x),x,inf);

(%o10) inf

We obtain limx→−∞ f(x) = 0 and limx→+∞ f(x) = +∞. Plotting f(x)

(%i11) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[-4,4],

yrange=[-1,50],

color=black,

explicit(f(x),x,-4,4)

);

we see that it is asymptotic to the x-axis for large negative values of x, and it runs off to
infinity for large values of x.
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Example 2.2.3. Define f(x) = 2x2−3x+1
x+5 . Find the left and right limits at the vertical

asymptote and compute the limits at ±∞. Plot f(x) including the vertical asymptote
and the slant asymptote.

The vertical asymptote should appear at x = −5, since the denominator vanishes there.

(%i12) f(x):=(2*x^2-3*x+1)/(x+5)$

(%i13) limit(f(x),x,minf);

(%o13) -inf

(%i14) limit(f(x),x,inf);

(%o14) inf

(%i15) limit(f(x),x,-5,minus);

(%o15) -inf

(%i16) limit(f(x),x,-5,plus);

(%o16) inf

We make a preliminary plot to investigate the slant asymptote:

(%i17) wxdraw2d(

grid=true,

yaxis=true,

xaxis=true,

xrange=[-20,20],

yrange=[-80,80],

color=black,

title="Preliminary Plot of f(x)",

explicit((f(x)),x,-20,20)

);

We see that f(x) appears asymptotic to a tilted line as x becomes large in either
direction. We can get a handle on the slant asymptote by performing polynomial long
division on f(x) as follows:

(%i18) p:2*x^2-3*x+1$

q:x+5$

(%i19) divide(p,q);

(%o19) [2*x-13,66]

wxMaxima indicates that f(x) = 2x− 13 + 66
x+5 . As x becomes large, the remainder term

approaches 0 and the slant asymptote y = 2x− 13 becomes a good fit for f(x).
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Plotting f(x) with all its asymptotes, we obtain:

(%i20) wxdraw2d(

grid=true,

yaxis=true,

xaxis=true,

xrange=[-20,20],

yrange=[-80,80],

title="f(x)=(2x^2-3x+1)/(x+5)",

color=black,

explicit((f(x)),x,-20,20),

color=red,

line_type=dots,

explicit((2*x-13),x,-20,20),

parametric(-5,t,t,-80,80)

);

Example 2.2.4. Define f(x) = 1−cos x
x . Compute limx→0+ f(x) and make a plot to verify

your answer.

This is an interesting limit, because the numerator and denominator are both
approaching zero:

(%i21) limit(1-cos(x),x,0,plus);

(%o21) 0

(%i22) limit(x,x,0,plus);

(%o22) 0

Because 0/0 is an indeterminate form, the “by-hand” calculation would require some
algebraic manipulation. wxMaxima handles it quickly:

(%i23) limit((1-cos(x))/x,x,0,plus);

(%o23) 0

We verify with a quick plot:
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(%i24) wxdraw2d(

xaxis=true,

yaxis=true,

color=black,

xrange=[-1,1],

yrange=[-1,1],

explicit((1-cos(x))/x,x,-1,1)

);

The plot makes it clear that f(x)→ 0 as x→ 0 (from the left as well as the right).
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2.3 Exploring the Formal Definition of Limit

The ordinary limit of a function f(x) at x = a is defined precisely as follows:

limx→a f(x) = L if and only if, for any ε > 0 there exists a δ > 0 such that |f(x)− L| < ε
when |x− a| < δ.

That is, no matter how small our vertical tolerance, ε about L, we can always find a small
enough δ so f(x) is within ε of L when x is within δ of a. This agrees with the informal
definition that “making x really close to a guarantees that f(x) is really close to L”.

A limit at infinity has a similar definition:

limx→∞ f(x) = L if and only if, for any ε > 0 there exists an N > 0 such that
|f(x)− L| < ε when x > N .

That is, no matter how small our vertical tolerance, ε about L, we can always find a large
enough N so f(x) is within ε of L when x is greater than N . This agrees with the
informal definition that “making x really large guarantees that f(x) is really close to L”.

Finally, an infinite limit can be precisely defined as follows:

limx→a f(x) =∞ if and only if, for any M > 0 there exists a δ > 0 such that f(x) > M
when |x− a| < δ.

That is, no matter how large a y value M we choose, we can always find a small enough δ
so that f(x) exceeds M when x is within δ of a. This agrees with the informal definition
that “making x really close to a makes f(x) very really large”.

The precise definition of limit is very useful for proving theorems in formal analysis. Here,
we will simply use wxMaxima to improve our intuition about the so-called “ε− δ
definition”.

Example 2.3.1. Define f(x) = ln(x). Use wxMaxima to verify that limx→2 f(x) = ln 2.
Applying the formal definition of the limit, choose ε = 0.1 as the vertical tolerance about
ln 2. For this value of ε, find a decimal approximation for δ such that |f(x)− ln 2| < ε
when |x− 2| < δ.

Recall that wxMaxima’s symbol for the natural logarithm is log:

(%i1) f(x):=log(x);

(%o1) f(x):=log(x)

(%i2) limit(f(x),x,2);

(%o2) log(2)

We have verified that limx→2 f(x) = ln 2, so the formal definition of this limit must be
satisfied. For ε = 0.1, we can investigate further by making a plot of f(x) and using
horizontal lines to map out the window of width ε about ln(2). The upper y value is
ln(2) + .1 and the lower value is ln(2)− .1.
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(%i3) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

title="f(x)=ln(x) with interval of width epsilon about ln(2)",

color=black,

explicit((f(x)),x,0,3),

color=red,

explicit((log(2)+.1),x,0,3),

explicit((log(2)-.1),x,0,3)

);

Now we should be able to find a δ sufficiently small to constrain the values of f(x) within
this narrow vertical range when x is within δ of 2. In order to get the precise information,
we find the intersections between f(x) and the horizontal lines:

(%i4) float(solve(f(x)=log(2)+.1,x));

rat: replaced -0.1 by -1/10 = -0.1

(%o4) [x=2.210341836151295]

(%i5) float(solve(f(x)=log(2)-.1,x));

rat: replaced 0.1 by 1/10 = 0.1

(%o5) [x=1.809674836071919]

To three decimal places, we can say that when x lies on [1.810, 2.210], f(x) is constrained
to [ln(2)− .1, ln(2) + .1]. We still need to find the δ that works in the formal definition, so
we choose the smaller of the two distances bewteen x = 2 and the endpoints of the
interval [1.810, 2.210]; i.e., δ = 0.19. Now we can say that f(x) is within 0.1 of ln(2) when
x is within .19 of 2, and the formal definition is satisfied for ε = 0.1.

Finally, we should re-do the plot with the lines x = 2− δ = 1.81 and x = 2 + δ = 2.19
added to illustrate how the formal definition is satisfied:

(%i6) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[1.6,2.4],

yrange=[.4,.9],

title="epsilon interval about y=ln(2) and delta interval about x=2",
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color=black,

explicit((f(x)),x,0,3),

color=red,

explicit((log(2)+.1),x,0,3),

explicit((log(2)-.1),x,0,3),

color=blue,

parametric(1.81,t,t,.4,.9),

parametric(2.19,t,t,.4,.9)

);

Whenever x is within [2− .19, 2 + .19] we see that f(x) is within [ln 2− .1, ln 2 + .1]. Of
course, if we chose an even smaller ε, we could easily find a smaller δ to constrain the y
values to within ε of ln(2).

Example 2.3.2. Define f(x) = 4e−0.3·x · sin (3πx) + 2. Use wxMaxima to compute the
limit at positive infinity. Once the limit is determined, illustrate the formal approach to
the limit by using ε = .05.

First, we compute the limit:

(%i7) f(x):=4*%e^(-.3*x)*sin(3*%pi*x)+2$

(%i8) limit(f(x),x,inf);

rat: replaced -0.3 by -3/10 = -0.3

(%o8) 2

We see that limx→∞ f(x) = 2. Next, we plot f(x) together with the narrow window
represeting our vertical tolerance of ε = 0.05 about y = 2:

(%i9) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

title="f(x) together with y=1.95 and y=2.05",

color=black,

explicit((f(x)),x,0,20),

color=red,

explicit(1.95,x,0,20),

explicit(2.05,x,0,20)

);
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Recalling the formal definition of a limit at infinity, we search for a large enough N to
guarantee that f(x) is within .05 of 2 whenever x > N . It is interesting to find the
smallest N possible, and we can get a good approximation by visual inspection of the
plot of f(x). We look for the final intersection between f(x) and the horizontal lines
y = 1.95 and y = 2.05, before f(x) becomes constrained between the two lines forever.
We zoom in to get a better look at this intersection:

(%i10) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

title="f(x) together with y=1.95 and y=2.05",

color=black,

explicit((f(x)),x,12,16),

color=red,

explicit(1.95,x,12,16),

explicit(2.05,x,12,16)

);

The final intersection appears to happen just to the right of 14.5. We can nail it down to
several decimal places by computing the intersection point in wxMaxima:

(%i11) find_root(f(x)-1.95,x,14.5,15);

(%o11) 14.52360146112245

To three decimal places, we conclude that when x > 14.524, f(x) is within .05 of 2.
Again, we can see that a smaller ε would simply require us to find a larger N .
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2.4 Module 2 Exercises

1. Compute limx→π
3

+ cosx by using a ten-step do-loop with the formula (1 + 1
2i )

π
3 .

2. Compute limx→−3−
2

x+3 by using a 20-step do-loop (choose your own sequence).

3. Use limit to identify all asymptotes of f(x) = 3−5x2

x2−8 . Make a plot of f(x) including
all the asymptotes in red.

4. Use limit to compute limx→3

√
x−
√
3

x−3 .

5. Use limit to compute limn→∞(1 + 1
n )n Comment on the result.

6. For the function in Example 2.3.2, f(x) = 4e−0.3·x · sin (3πx) + 2, we can study
limx→∞ f(x) by using the “squeeze theorem”. Substitute the maximum and
minimum values of the sine function in order to obtain a curve that bounds f(x)
from above (call it UPPER(x)) and a curve that bounds f(x) from below (call it
LOWER(x)). Plot f(x) with these two curves shown in red. Finally, use limit to
show that both the upper and lower bounds approach 2 as x→∞ (the squeeze
theorem tells you that f(x)→ 2 as well).

7. The derivative of a function f(x) can be written f ′(x) = limh→0
f(x+h)−f(x)

h . Use
this definition to find the derivative of cosx in wxMaxima.

8. A function f(x) is continuous at x = a if limx→a f(x) = f(a). Use wxMaxima to
show that f(x) = tanx is continuous at x = π

3 .

9. The Intermediate Value Theorem states that, for any continuous function on [a, b]
for which f(a) 6= f(b), and any number u between f(a) and f(b), there exists a c in
(a, b) such that f(c) = u. In other words, if f(x) is continuous, then all y values

between f(a) and f(b) must appear on the interval [a, b]. Define f(x) = e−x
2

. Apply
the Intermediate Value Theorem on the interval [0, 1] using u = 0.5; i.e., find c.

10. Using Example 2.3.1 as a model, apply the formal definition of limit to
limx→π

2
(sinx+ cosx). Use ε = .001.

11. Using M = 1000, apply the formal definition of limit to illustrate that
limx→0

1
x2 =∞.

12. The unit step function (also called the Θ function) is a piecewise defined function

Θ(x) =

{
0 x < 0

1 x ≥ 0
. Θ(x) is built in to wxMaxima as unit_step(x). Compute

limx→0− Θ(x), limx→0+ Θ(x) and limx→0 Θ(x). Cite a theorem to explain why the
last limit does not exist.
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3.1 The Tangent Line Problem

3.1.1 The Tangent Line from a Sequence of Secant Lines

A secant is a line connecting two points on a function, (a, f(a)) and (b, f(b)). We can
approximate the slope of the tangent at (a, f(a)) by computing the slopes of secant lines
on smaller and smaller intervals with x = a fixed at one end.

Example 3.1.1. For the function f(x) = 0.5x2 − 3x, find the equation of the secant line
connecting (1, f(1)) to (3, f(3)). Make a plot of f(x) together with a plot of the secant
line.

Recall that the slope of a line connecting two points (a, f(a)) and (b, f(b)) is given by

m = f(b)−f(a)
b−a . We can plug this into the point-slope form to obtain

y − f(a) = f(b)−f(a)
b−a · (x− a). We solve this equation for y when we define the secant line

in wxMaxima. The secant line is defined as a function of three variables, x, a and b, so we
can quickly find any secant line by just changing a and b inside wxdraw2d.

(%i1) f(x):=0.5*x^2-3*x$

(%i2) SECANT(x,a,b):=((f(b)-f(a))/(b-a))*(x-a)+f(a)$

(%i3) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

title="f(x) with a secant line",

color=black,

explicit((f(x)),x,0,4),

color=red,

explicit((SECANT(x,1,3)),x,0,4)

);

Example 3.1.2. For f(x) =
√

9− x2, use a do-loop to compute the slopes of secant lines
on [−2, 0], [−2,−.1], [−2,−.2], . . . , [−2,−1.9]. Use makelist to plot the secant lines in red
together with f(x) in black.

We use formula 0.1− 0.1 · i to generate the sequence of right-hand points. We use for-do

to compute the sequence of slopes and makelist to compute the equations of all the
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secant lines. Note that the list has to be ready to import into wxdraw2d – we include
explicit and the x range in each list element. Finally, we use dimensions to make the
semi-circle f(x) appear properly.

(%i4) f(x):=sqrt(9-x^2)$

(%i5) SLOPE(a,b):=(f(b)-f(a))/(b-a)$

(%i6) SECANT(x,a,b):=SLOPE(a,b)*(x-a)+f(a)$

(%i7) (print ("interval",".........","slope"),

for i:1 thru 20 do

(S:float(SLOPE(-2,0.1-0.1*i)),

print("[-2,",0.1-0.1*i,"]",".........",S))

);

interval.........slope

[-2, 0.0].........0.38196601125011

[-2,-0.1].........0.40119204874379

[-2,-0.2].........0.42069885106631

[-2,-0.3].........0.44052607871769

[-2,-0.4].........0.46071610747744

[-2,-0.5].........0.48131460936668

[-2,-0.6].........0.50237122417145

[-2,-0.7].........0.52394034743321

[-2,-0.8].........0.54608206788367

[-2,-0.9].........0.56886329704641

[-2,-1.0].........0.5923591472464

[-2,-1.1].........0.61665463321198

[-2,-1.2].........0.64184679934214

[-2,-1.3].........0.66804741345624

[-2,-1.4].........0.69538642464088

[-2,-1.5].........0.72401646770705

[-2,-1.6].........0.75411882647529

[-2,-1.7].........0.78591147120622

[-2,-1.8].........0.81966011250105

[-2,-1.9].........0.8556937574899

(%o7) done

(%i8) L:makelist(explicit(SECANT(x,-2,.1-.1*i),x,-3,3),i,1,20)$

(%i9) wxdraw2d(

grid=true,

xaxis=true,

dimensions=[600,600],

title="f(x)=sqrt(9-x^2) with secant lines approaching a tangent",

color=black,

explicit(f(x),x,-3,3),

color=red,

L

);
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As the interval gets smaller and smaller (with −2 always the left side of the interval), the
secant lines rotate counter-clockwise and become closer and closer to the tangent line at
x = −2. The slope of the tangent line appears to be slightly less than 1, which agrees
with the output of our do-loop.

3.1.2 The Tangent Line as a Limit

The limit process in the previous Example can be generalized to find the exact slope of
the tangent line to f(x) at x = a. We compute the slope of the secant line connecting
(a, f(a)) and (a+ h, f(a+ h)), then we take the limit as h→ 0. An alternative notation is
that we take the slope of the secant line connecting (a, f(a)) and (x, f(x)), then take the
limit as x→ a. The slope of the tangent line at x = a is called the derivative of f(x) at
x = a, written f ′(a):

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
= lim
x→a

f(x)− f(a)

x− a

Example 3.1.3. Define f(x) = tanx, then use the “limit definition” of the derivative to
compute f ′(1). Finally, produce a plot of f(x) together with the tangent line at (1, f(1)).

We can use either “limit definition” to find f ′(1):

(%i10) f(x):=tan(x)$

(%i11) limit(((f(1+h)-f(1))/(h)),h,0);

(%o11) 1/cos(1)^2

(%i12) limit(((f(x)-f(1))/(x-1)),x,1);

(%o12) 1/cos(1)^2
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We see that f ′(1) = 1
cos2 1 . The equation of the tangent line is then computed using the

fact that the slope is f ′(1) at the point (1, f(1)) (we solve the point-slope form for y).

(%i13) SLP:%$

(%i14) TNGT(x):=SLP*(x-1)+f(1)$

(%i15) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[-2,2],

yrange=[-10,10],

title="f(x)=tan(x) with the tangent line at x=1",

color=black,

explicit((f(x)),x,-2,2),

color=red,

explicit((TNGT(x)),x,-2,2)

);

We see that the tangent line behaves appropriately at x = 1.

Example 3.1.4. Define f(x) = xn, then use the limit definition of the derivative to find
a general formula for f ′(x) (this formula is sometimes called the “power rule”).

This is just one example of how the formulas are derived for the “algebra of derivatives”:
every rule comes from the computation of a limit. We evaluate the derivative at x = X to
emphasize that the result is valid for any real number.

(%i16) f(x):=x^n$

(%i17) limit(((f(x)-f(X))/(x-X)),x,X);

(%o18) n*X^(n-1)

We conclude that, if f(x) = xn, then f ′(x) = n · xn−1 for any value of x. We can view
f ′(x) as a new function of x that tells us the slope of f(x) at any value of x.
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3.2 wxMaxima’s Derivative Commands

As you might expect, wxMaxima can quickly find the derivative of a function using the
diff command:

Example 3.2.1. For the function f(x) = tan−1 x:

a. compute f ′(1.5) b. find all x such that f ′(x) = 1
2

a. Note that we have to use ’’ when defining a new function as the derivative of an old
function. This makes wxMaxima compute the general expression for f ′(x) before it
attempts to substitute particular values of x (substituting x = 1.5 into diff(f(x),x)

produces an error).

(%i1) f(x):=atan(x)$

(%i2) f_prime(x):=’’(diff(f(x),x));

(%o2) f_prime(x):=1/(x^2+1)

(%i3) f_prime(1.5);

(%o3) 0.30769230769231

b. We use solve to find the x values for which f ′(x) = 0.5:

(%i4) solve(f_prime(x)=0.5,x);

rat: replaced -0.5 by -1/2 = -0.5

(%o4) [x=-1,x=1]

It is worth checking this answer graphically. We will plot f(x) together with the tangent
lines at x = ±1::

(%i5) TANGENT(x,a):=f_prime(a)*(x-a)+f(a)$

(%i6) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

title="The arctangent function with two tangent lines at x=+/- 1",

color=black,

explicit((f(x)),x,-3,3),

color=red,

explicit((TANGENT(x,-1)),x,-3,3),

explicit((TANGENT(x,1)),x,-3,3)

);
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We see that these two tangent lines are the only tangent lines with slope 1
2 .

Example 3.2.2. Define f(x) = 2 sinx. Use wxMaxima to compute f ′(x). Compute the
equation of the tangent line to f(x) at x = 2. Finally, plot f(x), f ′(x) and the tangent
line at x = 2. Comment on the slope relationship between f(x) and f ′(x) at x = 2.

(%i7) f(x):=2*sin(x)$

(%i8) f_prime(x):=’’(diff(f(x),x))$

(%i9) TANGENT(x,a):=f_prime(a)*(x-a)+f(a)$

(%i10) wxdraw2d(

grid=true,

xrange=[-5,5],

yrange=[-5,5],

dimensions=[600,600],

title="f(x)=2sin(x), f_prime(x), and a tangent line at x=2",

color=black,

explicit((f(x)),x,-5,5),

color=grey,

explicit((f_prime(x)),x,-5,5),

color=red,

explicit((TANGENT(x,2)),x,-5,5)

);

The slope of the tangent line to f(x) is slightly greater than −1 (we set dimensions in
the plot to make it easier to estimate). Correspondingly, the graph of f ′(x) has a y
coordinate slightly greater than −1 at x = 2. A decimal approximation is found quickly
in wxMaxima:

(%i11) float(f_prime(2));

(%o11) -0.83229367309428
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It is important to be able to “eyeball” the graph of a function and sketch its derivative in
this way – the derivative function has y values equal to the slope of f(x) at each value of
x.

Example 3.2.3. Define f(x) = sin5 (x) · ex − cos2 x and find its first three derivatives.
Use trigsimp to simplify according to pythagorean identities.

The point of this example is simply to illustrate how wxMaxima handles higher order
derivatives that would be very tedious if done by hand!
(%i12) f(x):=(sin(x))^5*%e^x-(cos(x))^2;

(%o12) f (x) := sin (x)
5
ex − cos (x)

2

(%i13) diff(f(x),x);

(%o13) ex sin (x)
5

+ 5 ex cos (x) sin (x)
4

+ 2 cos (x) sin (x)
(%i14) diff(f(x),x,2);

(%o14) −4 ex sin (x)
5

+ 10 ex cos (x) sin (x)
4

+ 20 ex cos (x)
2

sin (x)
3 − 2 sin (x)

2

+2 cos (x)
2

(%i15) trigsimp(%);

(%o15) −24 ex sin (x)
5

+ 10 ex cos (x) sin (x)
4

+ 20 ex sin (x)
3 − 4 sin (x)

2
+ 2

(%i16) diff(f(x),x,3);

(%o16) −14 ex sin (x)
5 − 50 ex cos (x) sin (x)

4
+ 60 ex cos (x)

2
sin (x)

3
+

60 ex cos (x)
3

sin (x)
2 − 8 cos (x) sin (x)

(%i17) trigsimp(%);

(%o17) −74 ex sin (x)
5 − 110 ex cos (x) sin (x)

4
+ 60 ex sin (x)

3
+ 60 ex cos (x) sin (x)

2 −
8 cos (x) sin (x)
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3.3 Products, Quotients and Linear Combinations

The derivative of a product, quotient or linear combination of functions can be broken
down into the derivatives of the component functions:

The Product Rule:
d

dx
[f(x) · g(x)] = f ′(x) · g(x) + f(x) · g′(x)

The Quotient Rule:
d

dx

f(x)

g(x)
=
f ′(x) · g(x)− f(x) · g′(x)

[g(x)]2

Linear Combinations:
d

dx
[a · f(x) + b · g(x)] = a · f ′(x) + b · g′(x)

Example 3.3.1. Verify the quotient rule for the functions f(x) = sinx and g(x) = cosx.

(%i1) f(x):=sin(x)$

g(x):=cos(x)$

f_prime(x):=(diff(f(x),x))$

g_prime(x):=(diff(g(x),x))$

(%i2) (f_prime(x)*g(x)-f(x)*g_prime(x))/(g(x))^2;

(%o2) (sin(x)^2+cos(x)^2)/cos(x)^2

(%i3) trigsimp(%);

(%o3) 1/cos(x)^2

We recognize that sin x
cos x = tanx and that d

dx tanx = sec2 x as expected. Note that
trigsimp was required to force wxMaxima to apply pythagorean identities to the result.
Verifying directly, we obtain:

(%i4) diff((sin(x)/cos(x)),x);

(%o4) sin(x)^2/cos(x)^2+1

(%i5) trigsimp(%);

(%o5) 1/cos(x)^2

Example 3.3.2. The basic hyperbolic functions are defined as: coshx = 1
2 (ex + e−x) and

sinhx = 1
2 (ex − e−x). Use the linear combination rule to find the derivatives of these two

functions, then use the quotient rule to find the derivative of tanhx = sinh x
cosh x .

We manually use the linear combination rule and the quotient rule, but we use
wxMaxima for everything else:

(%i6) POS:%e^x$

NEG:%e^(-x)$

(%i7) POS_prime:diff(POS(x),x)$

NEG_prime:diff(NEG(x),x)$

(%i8) COSH:0.5*POS+0.5*NEG$
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SINH:0.5*POS-0.5*NEG$

(%i9) COSH_prime:0.5*POS_prime+0.5*NEG_prime;

SINH_prime:0.5*POS_prime-0.5*NEG_prime;

(%o9) 0.5*%e^x-0.5*%e^(-x)

(%o10) 0.5*%e^x+0.5*%e^(-x)

We see that (coshx)′ = sinhx and (sinhx)′ = coshx. The hyperbolic functions are built
into wxMaxima, so we can check our work by differentiating directly:

(%i10) diff(cosh(x),x);

(%o10) sinh(x)

(%i11) diff(sinh(x),x);

(%o11) cosh(x)

Applying the quotient rule “manually” to find (tanhx)′, we obtain:

(%i12) TANH_prime:(SINH_prime*COSH -SINH*COSH_prime)/(COSH^2);

(%o12) ((0.5*%e^x+0.5*%e^(-x))^2-(0.5*%e^x-0.5*%e^(-x))^2)

/(0.5*%e^x+0.5*%e^(-x))^2

(%i13) expand(%);

(%o13) 1.0/(0.25*%e^(2*x)+0.25*%e^(-2*x)+0.5)

We check our work by differentiating the hyperbolic tangent directly and applying
exponentialize to convert to exponential functions:

(%i14) diff(tanh(x),x);

(%o14) sech(x)^2

(%i15) exponentialize(%);

(%o15) 4/(%e^x+%e^(-x))^2

(%i16) expand(%);

(%o16) 4/(%e^(2*x)+%e^(-2*x)+2)

We can divide this by 4 in in the numerator and denominator to obtain the original
expression.
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3.4 Derivatives of Function Compositions

3.4.1 The Chain Rule

The chain rule is a rule for differentiating function compositions. For example, if
h(x) = g(f(x)), then h′(x) = g′(f(x))f ′(x); that is, we compute g′(x) but evaluate it at
f(x), then tack on a factor of f ′(x). In the physical sciences, it is typical to use Leibniz
notation as a mnemonic: dh

dx = dh
df ·

df
dx , which means we differentiate the entire function

h(x) with respect to f(x) (treating f(x) as a single variable), then we tack on a factor of
f ′(x).

Example 3.4.1. Two ways to look at the chain rule.

a. To illustrate the chain rule in Newton’s notation, find the derivative of h(x) = ex
2

by
defining f(x) and g(x) such that h(x) = g(f(x)) and computing g′(f(x)) · f ′(x).

(%i1) f(x):=x^2$

g(x):=%e^x$

h(x):=g(f(x))$

(%i2) ev(h(x));

(%o2) %e^x^2

(%i3) g_prime(x):=’’(diff(g(x),x));

(%o3) g_prime(x):=%e^x

(%i4) g_prime(f(x))*diff(f(x),x);

(%o4) 2*x*%e^x^2

b. To illustrate the chain rule using the “Leibniz mnemonic”, first define the function
h(x) = ex

2

as ef , where f is understood to be x2. Multiply dh
df and df

dx to construct the
derivative of h.

(%i5) h:%e^f$

dh_df:diff(h,f);

(%o5) %e^f

(%i6) f:x^2$

df_dx:diff(f,x);

(%o6) 2*x

(%i7) dh_df*df_dx;

(%o7) 2*%e^f*x

(%i8) ev(%);

(%o8) 2*x*%e^x^2

We obtain the same result. Note that ev% had to be used to get wxMaxima to simplify
the final result.

The chain rule can be extended naturally to compositions of more than two functions. If
i(x) = h(g(f(x))) then we apply the chain rule twice:
i′(x) = h′(g(f(x))) · (g(f(x)))′ = h′(g(f(x)))g′(f(x))f ′(x). The equivalent mnemonic in
Leibniz notation is di

dx = di
dg ·

dg
df ·

df
dx . The mnemonic is much more elegant than the prime

notation (which has grown quite ugly): it tells us to differentiate i with respect to g
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(treating g as a single variable), then differentiate g with respect to f (treating f as a
single variable), then differentiate f with respect to x.

Example 3.4.2. Let i(x) =
√

sin2 x+ 2. Find i′(x) by performing the three derivatives
di
dg ,

dg
df , and df

dx . Check your answer by directly computing i′(x).

(%i9) i:sqrt(g)$

di_dg:(diff(i,g));

(%o9) 1/(2*sqrt(g))

(%i10) g:f^2+2$

dg_df:(diff(g,f));

(%o10) 2*f

(%i11) f:sin(x)$

df_dx:(diff(f,x));

(%o11) cos(x)

(%i12) di_dg*dg_df*df_dx;

(%o12) (f*cos(x))/sqrt(g)

(%i13) ev(%);

(%o13) (cos(x)*sin(x))/sqrt(f^2+2)

(%i14) ev(%);

(%o14) (cos(x)*sin(x))/sqrt(sin(x)^2+2)

Note that the ev% command had to be used twice to encourage wxMaxima to make the
proper substitutions. Checking our answer:

(%i15) diff(sqrt((sin(x))^2+2),x);

(%o15) (cos(x)*sin(x))/sqrt(sin(x)^2+2)

3.4.2 Logarithmic Differentiation

Recall the differentiation formula (lnx)′ = 1
x . Now suppose that y depends x, and we

wish to differentiate a function g(x) = ln y. The chain rule tells us that g′(x) = 1
y · y

′(x).

This can provide a useful trick for finding y′(x) when troublesome exponents appear in
the expression for y(x). The technique is known as logarithmic differentiation.

Example 3.4.3. Compute the first derivative of xx by using logarithmic differentiation
step-by-step. Verify your answer by directly computing the derivative.

(%i16) EQN1:y=x^x;

(%o16) y=x^x

(%i17) EQN2:log(EQN1);

(%o17) log(y)=x*log(x)

(%i18) depends(y,x)$

(%i19) EQN3:diff(EQN2,x);

(%o19) (dy/dx)/y=log(x)+1

(%i20) EQN4:y*EQN3;

(%o20) (dy/dx)=(log(x)+1)*y

(%i21) subst(x^x,y,EQN4);

(%o21) (d/dx)x^x=x^x*(log(x)+1)
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We see that d
dxx

x = xx · (lnx+ 1). Checking our answer:

(%i22) y:x^x$

diff(y,x);

(%o22) x^x*(log(x)+1)

3.4.3 Implicit Differentiation

When a formula can only be defined implicitly (that is, we cannot solve for y as a
function of x), we can take advantage of the chain rule to compute y′(x) as a function of
both x and y. To perform implicit differentiation, we simply differentiate both sides of
the formula with respect to x, then solve for y′(x). We just have to keep in mind that
d
dxf(y) = df

dy ·
dy
dx .

Example 3.4.4. Use implicit differentiation to find the slope of a tangent line to the
unit circle at any point (as a function of x and y). Use your answer to plot the tangent

line at the point (− 1
2 ,−

√
3
2 ).

The unit circle has the formula x2 + y2 = 1, which cannot be explicitly solved for y
without breaking it into two functions. We find y′(x) by simply differentiating the
formula on both sides and algebraically isolating dy

dx :

(%i23) kill(all)$

(%i1) UNITCIRC:x^2+y^2=1$

(%i2) depends(y,x)$

(%i3) EQN1:diff(UNITCIRC,x);

(%o3) 2*y*(dy/dx)+2*x=0

(%i4) EQN2:EQN1-2*x;

(%o4) 2*y*(dy/dx)=-2*x

(%i5) EQN3:EQN2/(2*y);

(%o5) (dy/dx)=-x/y

We see that dy
dx = −xy . Now we substitute the point (− 1

2 ,−
√
3
2 ), compute a tangent line

and plot along with the unit circle.

(%i6) kill(all)$

(%i1) SLOPE:-(-1/2)/(-sqrt(3)/2)$

(%i2) TANGENT(x):=SLOPE*(x+1/2)-sqrt(3)/2$

(%i3) wxdraw2d(

grid=true,

dimensions=[600,600],

xaxis=true,

yaxis=true,

xrange=[-2,2],

yrange=[-2,2],

title="The unit circle with a tangent line",

color=black,

implicit((x^2+y^2=1),x,-1,1,y,-1,1),
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color=red,

explicit((TANGENT(x)),x,-2,2)

);
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3.5 Module 3 Exercises

1. Define the function f(x) = (x− 2)(x)(x+ 1). In the style of Example 3.1.2, find the
slope of the tangent line at x = 1 by using makelist to generate a sequence of ten
intervals [1, 2], [1, 1.5], [1, 1.25].... Make a plot of f(x) together with the sequence of
secant lines approaching the tangent line.

2. Use the “limit definition” of the derivative to compute derivative formulas for the
following functions, then verify using diff.

a. f(x) = tanx b. f(x) = secx c. f(x) = ln (cosx)

3. Define f(x) = secx. Use diff to find the slope of the tangent line at x = 1.2.
Finally, plot f(x) together with the tangent line.

4. Use the definitions of coshx and sinhx and the “product rule” to find
d
dx (coshx · sinhx) “manually”in the style of Example 3.3.2. Verify your answer by
using diff and wxMaxima’s built in cosh and sinh functions. Some simplification
will be necessary to verify your answer!

5. When computing the derivative of a complicated trigonometric function, it can be
helpful to simplify the result using trigsimp (simplifies using pythagorean
identities), trigreduce (simplifies using sum of angles identities), trigexpand
(expands using sum of angles identities) and/or trigrat (simplifies rational
expressions of trig functions). Define f(x) = sinx · cos2 (2x) and find f ′(x) using
diff. Use trigexpand then trigsimp to express your answer entirely in terms of
powers of cosx.

6. Following the style of Example 3.4.1 and Example 3.4.2, compute dh
dx for

a. h(x) = cos (3x3 − 4x+ 5) b. h(x) = e
√
sin x

Remember to use kill(all) if previous assignments are interfering with your
calculations.

7. Compute the fifth derivative of f(x) = secx and simplify as much as possible.

8. The Mean Value Theorem states that (provided a function is continuous on [a, b]
and differentiable on (a, b)), we can always find x = c on (a, b) for which the slope of
the tangent line is equal to the slope of the secant line connecting (a, f(a)) and

(b, f(b)). That is, we can find c such that f ′(c) = f(b)−f(a)
b−a . For the function

f(x) = tan−1 x, find c for the interval [0.5, 2.5]. Plot f(x) in black together with the
appropriate secant and tangent lines in red. Comment on the geometric relationship
between the secant line and the tangent line.

9. Let y = cos−1 x. To derive the formula for dy
dx , we have to invert the formula as

cos y = x and use implicit differentiation. Following the style of Example 3.4.4,
compute dy

dx , including a final step of substituting the original definition of y and
simplifying the result if necessary to obtain an explicit formula for y′(x).

10. To perform a “linear approximation”, we use f(a) and f ′(a) to draw a tangent line
at x = a. Then (as long as ∆x is relatively small), we can approximate f(a+ ∆x)
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by using the equation of the tangent line instead of f(x) itself. This is a special case
of a truncated Taylor series – a trick that it used often in physical sciences to
simplify a mathematical model.

Define f(x) = sinx and find the equation of the tangent line at x = 0. Call your
tangent line T (x). Now use your tangent line to make a linear approximation to
f(0.1); i.e., compute T (0.1). Compare to the actual value of f(0.1). How much
error does the linear approximation make? Make a plot of f(x) and T (x) on [0, 0.2]
to highlight the behavior of the linear approximation near x = 0.

11. The binomial approximation is another useful linear approximation. Suppose that
f(x) = (1 + x)50. Use a linear approximation near x = 0 to estimate 1.0550. Check
your answer by actually computing 1.0550 and computing the error committed by
the approximation. Note: this approximation is most useful for simplifying a
variable expression (1 + x)n based on the assumption that x is “small”.

12. For the ellipse (x−2)2
4 + (y+3)2

25 = 1, use implicit differentiation to find an expression

for dy
dx as a function of both x and y. Find equations for both tangent lines that

have slope 1
2 . In order to find the points with slope 1

2 you will have to solve a
system of equations: one for the derivative and one for the original ellipse. The
proper syntax for solving a system is solve([equation1,equation2],[x,y]);.

Find equations for both tangent lines perpendicular to those with slope 1
2 . Finally,

plot the ellipse in black with all four tangent lines shown in red. Use dimensions to
force the ellipse to appear with the correct aspect ratio.

13. Find the five function generalization of the product rule. That is, find a general
expression for d

dx [f(x) · g(x) · h(x) · i(x) · j(x)]

14. In one dimension, the position of a particle is given by its x-coordinate. A moving
particle will have different x values at different times, and we can plot its motion
using ordered pairs (t, x) to produce a plot called a position-time graph. Position is
a function of time, x(t), since at any given time, a particle can only be in one place!
The average velocity between two moments in time is given by the simple ratio
vavg = x2−x1

t2−t1 . Unless otherwise stated, this book will always use meters (m) for
distance units and seconds (s) for time units, so vavg must have units of m/s.

Suppose that a rocket is observed to have the approximate position function
x(t) = 2.35 · x3 − 5.1 · x2 + 4.

(a) Find the average velocity from t = 2s to t = 3s; i.e., find vavg on the time
interval [2, 3].

(b) Repeat your calculation for the time interval [2, 2.5], [2, 2.25], and so on for 10
steps by using makelist. Does the limit appear to exist? What is its value?

(c) By taking the average velocity over a very tiny interval, we are actually finding
instantaneous velocity (the velocity has no time to change significantly over a
very tiny time interval). In terms of derivatives, how should instantaneous
velocity be defined?
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4.1 Increasing, Decreasing and Local Extrema

Assuming f(x) is differentiable, f ′(x) can tell us a lot about the graph of f(x):

f(x) is increasing on any interval for which f ′(x) > 0.

f(x) is decreasing on any interval for which f ′(x) < 0

It is possible for a function to continue increasing or decreasing even if f ′(x) = 0 at a
single point (this is called a saddle point).

A critical number of f(x) is a value of x for which f ′(x) = 0 or f ′(x) is undefined.

A local maximum of f(x) occurs at a critical number where f ′(x) transitions from
positive to negative as we read left to right.

A local minimum of f(x) occurs at a critical number where f ′(x) transitions from
negative to positive as we read left to right.

Minima and maxima can be referred to collectively as extrema.

Example 4.1.1. Find the critical numbers, the regions of increasing/decreasing and the
local extrema of f(x) = −2x3 + 6x2 − 5. Make a plot of f(x) with the regions of
increasing/decreasing color coded and the local extrema clearly labeled.

We use wxMaxima to find f ′(x) and to find all solutions of f ′(x) = 0 (since f ′(x) is a
polynomial, we don’t have to worry about any values of x for which f ′(x) is undefined).

(%i1) f(x):=-2*x^3+6*x^2-5$

(%i2) f_prime:diff(f(x),x);

(%o2) 12*x-6*x^2

(%i3) solve(f_prime=0);

(%o3) [x=0,x=2]

The critical numbers are 0 and 2. Plotting f ′(x), we can clearly see the intervals where
f ′(x) > 0 and f ′(x) < 0:

(%i4) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[-10,10],

yrange=[-10,10],

title="Quick plot of f’(x)",

color=black,

explicit(f_prime,x,-10,10)

);
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We see that f ′(x) is negative on (−∞, 0), positive on (0, 2) and negative on (2,∞). We
should find a local minimum at (0, f(0)) because f ′(x) transitions from negative to
positive there, and we should find a local maximum at (2, f(2)) because f ′(x) transitions
from positive to negative there. Finally, we plot f(x) with the regions of
increasing/decreasing color coded and the local extrema marked with closed circles and
labeled:

(%i5) f(0);

f(2);

(%o5) -5

(%o6) 3

(%i7) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[-5,5],

yrange=[-10,10],

title="f(x) with increasing=blue, decreasing=red",

color=blue,

explicit(f(x),x,0,2),

color=red,

explicit(f(x),x,-5,0),

explicit(f(x),x,2,5),

color=black,

point_type=7,

points([[0,f(0)],[2,f(2)]]),

label(["Local Min (0,-5)",0,-6],["Local Max (2,3)",2,4])

);
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Example 4.1.2. Find the critical numbers, the regions of increasing/decreasing and the
local extrema of f(x) = | sinx| on [π6 ,

11π
6 ].

We start by plotting f ′(x) to get a sense for where the critical numbers might be:

(%i8) f(x):=abs(sin(x));

(%o8) f(x):=abs(sin(x))

(%i9) diff(f(x),x);

(%o9) (cos(x)*sin(x))/abs(sin(x))

(%i10) f_prime:%;

(%o10) (cos(x)*sin(x))/abs(sin(x))

(%i11) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

title="Quick plot of f_prime(x).",

color=black,

explicit(f_prime,x,0,2*%pi)

);

We see that f ′(x) = 0 somewhere on [1, 2] and somewhere on [4, 5], and there is a sudden
jump on [3, 4]. We examine f ′(x) = cos x sin x

| sin x| and decide that the zeros must be at π
2 and

3π
2 , since the cosine function vanishes for those values of x. The denominator of f ′(x)

vanishes when sinx = 0, so the location of the discontinuity must be x = π. We can
quickly verify these values in wxMaxima:
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(%i12) subst(%pi/2,x,f_prime);

(%o12) 0

(%i13) subst(3*%pi/2,x,f_prime);

(%o13) 0

(%i14) subst(%pi,x,f_prime);

expt: undefined: 0 to a negative exponent.

-- an error. To debug this try: debugmode(true);

wxMaxima detects that “something” has gone wrong at x = π: f ′(x) is undefined there.
Our critical numbers are π

2 , π and 3π
2 . We see that f ′(x) > 0 on [π6 ,

π
2 ] and [π, 3π2 ], while

f ′(x) < 0 on [π2 , π] and [3π2 ,
11π
6 ], so we can label the intervals of increasing/decreasing

accordingly in our plot of f(x). We will find local maxima at (π2 , f(π2 )) and (3π
2 , f( 3π

2 ))
where f ′(x) transitions from positive to negative, and we will find a local minimum at
(π, f(π)) where f ′(x) transitions from negative to positive:

(%i15) f(%pi/2);

f(3*%pi/2);

(%o15) 1

(%o16) 1

(%i17) f(%pi);

(%o17) 0

(%i18) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[0,6.5],

yrange=[-2,2],

title="f(x) with increasing=blue, decreasing=red",

color=blue,

explicit(f(x),x,%pi/6,%pi/2),

explicit(f(x),x,%pi,3*%pi/2),

color=red,

explicit(f(x),x,%pi/2,%pi),

explicit(f(x),x,3*%pi/2,11*%pi/6),

color=black,

point_type=7,

points([[%pi/2,f(%pi/2)],[3*%pi/2,f(3*%pi/2)],[%pi,f(%pi)]]),

label(["Local Max (pi/2,1)",%pi/2,1.5],

["Local Max (3pi/2,1)",3*%pi/2,1.5],

["Local Min (pi,0)",%pi,-0.5])

);
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4.2 Concavity and Inflection

f(x) is called concave up on any interval for which f ′(x) is increasing. In other words,
f(x) is concave up when f ′′(x) > 0.

f(x) is called concave down on any interval for which f ′(x) is decreasing. In other
words, f(x) is concave down when f ′′(x) < 0.

An inflection point of f(x) is the transition point between intervals of concave up and
concave down.

We look for inflection points at values of x for which f ′′(x) is zero or undefined.

Example 4.2.1. Find the inflection point of f(x) = e−x · (3x+ 2) on [0,∞), then make a
color coded plot of f(x) illustrating the regions of “concave up” and “concave down”.

This time, we take a less graphical approach to the prep work – using wxMaxima to
quickly determine the location at which f ′′(x) = 0 and the sign of f ′′(x) just to the left
and right of this point. Note that the second derivative is taken by using diff(f,x,2)

(%i1) f:%e^(-x)*(3*x+2)$

(%i2) f_prime:diff(f,x);

f_prime_prime:diff(f,x,2);

(%o2) 3*%e^(-x)-(3*x+2)*%e^(-x)

(%o3) (3*x+2)*%e^(-x)-6*%e^(-x)

(%i4) find_root(f_prime_prime,0,10);

(%o4) 1.333333333333333

(%i5) subst(1.2,x,f_prime_prime);

subst(1.4,x,f_prime_prime);

(%o5) -0.12047768476488

(%o6) 0.049319392788321

We see that the inflection point is a transition from “concave down” to “concave up”.
Now we compute the coordinates of the inflection point and produce a well-labeled plot
f(x):

(%i7) subst(1.3333333333333,x,f);

(%o7) 1.581582828694387

(%i8) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

title="f(x), concave up=blue, concave down=red",

color=red,

explicit(f,x,0,1.3333333333333),

color=blue,

explicit(f,x,1.33333333333,7),

color=black,

point_type=7,
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points([[1.3333333333333,1.58158]]),

label(["Inflection point at (1.333,1.582)",3.4,1.6])

);
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4.3 Optimization Problems

One of the most common scientific applications of differential calculus is optimization;
i.e., finding the maximum or minimum value of a function subject to the constraints of
the problem. The following definitions are useful:

For a function f(x) defined on an interval [a, b],

The absolute maximum is a value of f(x) greater than or equal to any other value of
f(x) found on [a, b].

The absolute minimum is a value of f(x) less than or equal to any other value of f(x)
found on [a, b].

We look for “absolute extrema” at the local extrema and possibly the endpoints of the
interval. In realistic applications an absolute extremum almost always occurs at a local
extremum.

Example 4.3.1. Find the absolute minimum value of V (r) = 1
r2 −

10
r on (0,∞).

First, we sketch V (r) to get a sense for what’s going on:

(%i1) V(r):=1/r^2-10/r;

(%o1) V(r):=1/r^2-10/r

(%i2) wxdraw2d(

xrange=[0,4],

yrange=[-30,1],

explicit(V(r),r,0,10)

);

It is clear that the single local minimum is also the absolute minimum. We locate the
minimum by using the first derivative, then we compute the absolute minimum value of V :

(%i3) diff(V(r),r);

(%o3) 10/r^2-2/r^3

(%i4) solve(%=0);

(%o4) [r=1/5]

(%i5) V(1/5);

(%o5) -25
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We see that V (r) takes its absolute minimum value of −25 at r = 1
5 .

Example 4.3.2. Find the maximum area of a rectangle constrained between f(x) = e−x
2

and the x axis with two vertices lying on f(x) and the bottom edge lying on the x axis.

Such a rectangle can be defined by the x-coordinate of its right edge. The width is 2x and
the height is f(x) for any x we choose. To illustrate, we plot two such rectangles for
x = 0.1 and x = 1.5. Note that the rectangle command draws a rectangle based on the
lower left, then upper right vertices. transparent=true stops the rectangles from
automatically filling with color.

(%i6) f(x):=%e^(-x^2)$

(%i7) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

title="f(x)=e^-x^2 with two inscribed rectangles",

color=black,

explicit(f(x),x,-4,4),

transparent=true,

color=blue,

rectangle([-.1,0],[.1,f(.1)]),

color=red,

rectangle([-1.5,0],[1.5,f(1.5)])

);

It is clear that large values of x make long, flat rectangles with very little area. Similarly,
small values of x make tall, skinny rectangles with very little area. Somewhere in between
there is a maximum area to be found! We find a formula for area as a function of x, then
differentiate to locate the maximum:

(%i8) AREA(x):=2*x*f(x)$

diff(AREA(x),x);

(%o9) 2*%e^(-x^2)-4*x^2*%e^(-x^2)

(%i10) solve(%=0);

(%o10) [x=-1/sqrt(2),x=1/sqrt(2)]

(%i11) AREA(1/sqrt(2));
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(%o11) sqrt(2)/sqrt(%e)

(%i12) float(%);

(%o12) 0.85776388496071

We implicitly defined rectangles using only positive values of x, so we discard the negative

solution. x = 1√
2

gives us a maximum area of
√
2√
e

or about 0.86.

We plot the area as a function of x to see how it changes with choices of x:

(%i13) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

title="Area as a function of x for inscribed rectangles.",

color=black,

explicit(AREA(x),x,0,5)

);

The area function peaks in the right place (x = 1√
2
≈ 0.71).
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4.4 Newton’s Method

Newton’s Method is an iterative technique used to approximate the roots of a function. If
we make a plot of a function f(x), we can pick a value of x relatively near the root we are
interested in. We then draw a tangent line at that point, and find the x-intercept of that
line. If we have chosen a “good enough” starting point, the x intercept of the tangent line
will be closer to the root. The process is then repeated until the desired precision is
obtained.

Example 4.4.1. Use Newton’s Method step-by-step to approximate the root of
f(x) = xex − 4 to five decimal places.

First, we make a quick plot of f(x), so we have some idea of where the root occurs:

(%i1) f(x):=x*(%e^x)-4$

(%i2) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[0,2],

yrange=[-5,5],

title="Quick plot of f(x).",

color=black,

explicit(f(x),x,0,5)

);

In order to illustrate how robust Newton’s Method is, we make a relatively poor first
guess at the root: x1 = 0.5. We compute f ′(x1) and construct the equation of the tangent
line using the point-slope form (the “known point” is (x1, f(x1))). Notice that float was
used to stop wxMaxima from expressing the answer as a hideous fraction!

(%i3) f_prime:diff(f(x),x);

(%o3) x*%e^x+%e^x

(%i4) x_1:0.5$

(%i5) f_prime_1:subst(x_1,x,f_prime);

(%o5) 2.473081906050192

(%i6) LINE_1:%*(x-x_1)+f(x_1);

(%o6) 2.473081906050192*(x-0.5)-3.175639364649936

(%i7) float(solve(LINE1=0,x));
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rat: replaced -3.17563936464994 by -51309850/16157329 = -3.17563936464994

rat: replaced 2.473081906050192 by 27877153/11272232 = 2.473081906050195

rat: replaced -0.5 by -1/2 = -0.5

(%o7) [x=1.784081759233688]

(%i8) x_2:ev(x,%);

(%o8) 1.784081759233688

We assigned x2 to the x-intercept of LINE_1 (note that ev must be used to extract the
numerical value of x2 first). x2 is our second approximation of the root of f(x). We make
a well-labeled plot to illustrate:

(%i9) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[0,2],

yrange=[-5,10],

title="f(x) with first Newton Method Line.",

color=black,

explicit(f(x),x,0,5),

label(["x_1",x_1,0.6],["x_2",x_2,-0.5],["(x_1,f(x_1))",x_1,-4.2]),

color=red,

explicit(LINE_1,x,0,5),

point_type=7,

points([[x_1,0],[x_1,f(x_1)],[x_2,0]])

);

We compute and plot a second iteration to visualize how the process converges on the
root. This time, we suppress some of the intermediate outputs and combine ev into the
last line to quickly obtain x3. We also use ratprint:false$ to suppress the annoying
rat notifications:

(%i10) f_prime_2:subst(x_2,x,f_prime)$

(%i11) LINE2:f_prime_2*(x-x_2)+f(x_2)$

(%i12) ratprint:false$

(%i13) x_3:ev(x,float(solve(LINE2=0,x)));

(%o13) 1.384568736281598

(%i14) wxdraw2d(
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grid=true,

xaxis=true,

yaxis=true,

xrange=[0,2],

yrange=[-5,10],

title="f(x) with first and second Newton Method lines.",

color=black,

explicit(f(x),x,0,5),

label(["x_1",x_1,0.6],["x_2",x_2,-0.5],["(x_1,f(x_1))",x_1,-4.2]),

label(["(x_2,f(x_2))",x_2,7.2],["x_3",x_3,-0.5]),

color=red,

point_type=7,

points([[x_2,0],[x_2,f(x_2)],[x_3,0]]),

explicit(LINE_2,x,0,5),

color=grey,

explicit(LINE_1,x,0,5),

points([[x_1,0],[x_1,f(x_1)]])

);

We see that the x intercepts are getting closer to the actual root.

We want to create a compact process that can easily be repeated – and we’ve got it down
to three lines per step. Now we just have to repeat the process until the output “settles
down” to five decimal places:

(%i15) f_prime_3:subst(x_3,x,f_prime)$

LINE_3:f_prime_3*(x-x_3)+f(x_3)$

x_4:ev(x,float(solve(LINE_3=0,x)));

(%o17) 1.224019109059294

(%i18) f_prime_4:subst(x_4,x,f_prime)$

LINE_4:f_prime_4*(x-x_4)+f(x_4)$

x_5:ev(x,float(solve(LINE_4=0,x)));

(%o20) 1.202510676401859

(%i21) f_prime_5:subst(x_5,x,f_prime)$

LINE_5:f_prime_5*(x-x_5)+f(x_5)$

x_6:ev(x,float(solve(LINE_5=0,x)));

(%o23) 1.202167958618544

(%i24) f_prime_6:subst(x_6,x,f_prime)$

LINE_6:f_prime_6*(x-x_6)+f(x_6)$
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x_7:ev(x,float(solve(LINE_6=0,x)));

(%o26) 1.202167873197046

We see that the answer has stopped changing in the fifth decimal place, so we can write
our approximated root as 1.20217. Checking with wxMaxima’s find_root, we obtain:

(%i27) find_root(f(x),0,2);

(%o27) 1.202167873197043

Our Newton’s Method answer agrees with wxMaxima’s answer to fourteen decimal places
after just six iterations.

Example 4.4.2. Use Newton’s Method to find the positive solution of coshx = x+ 3 to
five decimal places. Design a for-do loop to automate the process, including a print-out
of the results of each iteration. Finally, use wxMaxima’s find_root to check your answer.

We start by rephrasing the problem in terms of roots: a solution of coshx = x+ 3 is the
same thing as a solution to coshx− x− 3 = 0, so we define the function
f(x) = coshx− x− 3 and look for a positive root. A quick plot is used to decide the first
guess:

(%i28) kill(all)$

f(x):=cosh(x)-x-3$

(%i2) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[0,5],

yrange=[-5,15],

title="quick plot of f(x)",

color=black,

explicit(f(x),x,0,10)

);

We’ll use a first guess of x1 = 2. We refer to the last example to see how new xn’s were
generated from old ones, for example:

f_prime_4:subst(x_4,x,f_prime)$

LINE_4:f_prime_4*(x-x_4)+f(x_4)$

x_5:ev(x,float(solve(LINE_4=0,x)));
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In order to generalize this process, we have to formulate the pattern in a for-do loop. We
use Y as the original estimate. We assign X to have an initial value of Y, then we compute
the new estimate X, then assign Y to have the new value X (then the loop repeats). We
can play around with the number of iterations until we obtain the desired precision:

(%i3) ratprint:false$

(%i4) f(x):=cosh(x)-x-3$

(%i5) f_prime:diff(f(x),x)$

(%i6) Y:2$

(%i7) for n:1 thru 30

do(

X:Y,

f_prime:subst(X,x,f_prime),

TANLINE:f_prime*(x-X)+f(X),

X:ev(x,float(solve(TANLINE=0,x))),

print(X),

Y:X

);

2.471210539097841

2.284899059017247

2.407349289083669

2.335049592696741

2.381363682183222

2.352937265285999

2.37089999759066

2.359742023330758

2.366750365980099

2.362378157528604

2.365117548400225

2.363405763223947

2.36447721540062

2.363807265474839

2.364226441545812

2.363964277671913

2.364128283962616

2.364025700209412

2.36408987141559

2.364049731672287

2.364074840475577

2.364059134432552

2.364068959017595

2.364062813513952

2.364066657690751

2.364064253064437

2.364065757220357

2.364064816333332

2.364065404882162

2.364065036730068

(%o7) done
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We see that the estimate has settled down to 2.36406 after 30 iterations. We are still
unsure whether to round up or down, since the next decimal place is still fluctuating (we
could take even more iterations to settle the issue). Comparing with wxMaxima’s
find_root, we obtain:

(%i8) find_root(f(x),2,3);

(%o8) 2.364065178400271
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4.5 Module 4 Exercises

1. Define f(x) = sinx− x2. In the style of Example 4.1.1, make a plot of f ′(x) and
find the regions of increasing/decreasing and the local extrema of f(x). Produce a
color-coded plot of f(x) showing increasing/decreasing/local extrema.

2. Define f(x) = lnx+ ex on (0,∞). Find the regions of concave up/concave down
and make a color-coded plot of f(x) with the inflection point clearly labeled.

3. Define f(x) = x3. Find the single critical value for f(x). Describe what is going on
at the critical point – what is the name for this feature?

4. Consider the “central hump” of f(x) = cosx on [−π2 ,
π
2 ]. We can define an isoceles

triangle on this interval with one vertex at the origin and two vertices on the graph
of f(x). Make a plot of two such triangles together with f(x): one very short and
wide, and the other very tall and skinny. To plot a triangle, you can use
polygon([[vertex1],[vertex2],[vertex3]]). Finally, find the maximum area
for such an “inscribed” triangle.

5. Use Newton’s Method to find the root of f(x) = sinx on [π2 ,
3π
2 ]. Set up a do-loop

as in Example 4.4.2. Try x = π
2 as your first guess. What happens? Why? Now try

a better guess (something closer to the actual root you’re looking for). Perform
enough iterations to find the root to 5 decimal places.

6. L’Hopital’s Rule is a limit rule that can be applied in the case that lim f(x)
g(x) yields

an indeterminite form 0
0 or ±∞∞ . Provided the derivatives exist, lim f(x)

g(x) = lim f ′(x)
g′(x) .

Sometimes repeated applications of L’Hopital’s rule are necessary, and sometimes
the rule fails to yield anything useful.

For the following limits:

i. limx→∞
x3·ex
x2·ln x ii. limx→0

sin2 x
x2

(a) Show that the limit results in an indeterminate form.

(b) Apply L’Hopital’s rule (possibly more than once) by taking the necessary
derivatives, until an “obvious” limit results.

(c) Check your answer directly using limit on the original expression.

7. In one dimension, position is given by the x-coordinate of a particle. As discussed in
the Module 3 Exercises, we can plot the position on the vertical axis and time on
the horizontal axis to show the position as a function of time, x(t). The first
derivative of the position function gives us the instantaneous velocity: v(t) = x′(t)
(the rate of change in position), and the second derivative gives us the
instantaneous acceleration a(t) = v′(t) = x′′(t) (the rate of change in velocity). Our
default units for position are meters (m), and our default units for time are seconds
(s). The units of velocity are then m

s and the units of acceleration are m/s/s or m
s2 .

Define the position function x(t) = −2t2 + 12t+ 12 on [0, 5], and do the following:

(a) Make a color coded plot of x(t), v(t) and a(t) on [0, 5].

(b) Identify the interval(s) on which x(t) is increasing/decreasing. What do these
intervals mean for v(t)?
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(c) Identify the interval(s) on which v(t) is increasing/decreasing. What do these
intervals mean for a(t)?

8. Find and plot a quadratic position function for a particle that is moving in the
negative direction and speeding up. Plot this function together with v(t) and a(t).

9. When a projectile lands at the same height from which it was launched, the range

(horizontal distance of the flight) is given by the formula R = v0
2 sin 2θ
g , where v0 is

the launch speed, θ is the launch angle and g is the acceleration of gravity. Find the
launch angle that maximizes the range (considering v0 and g to be constants). Hint:
you need to declare constants to wxMaxima with declare(v_0,constant) and
declare(g,constant) before differentiating.

10. The Lennard-Jones potential decribes the electrical potential energy between two
atoms in the form V (r) = A

r12 −
B
r6 where A and B depend on the particular atoms,

and r is the separation distance. When two atoms are combined in a diatomic
molecule, they will stay very close to the minimum potential energy, so we can say
the “length” of the molecule is found at the minimum of V (r). Furthermore, the
electrical force between the atoms is given by F (r) = −dV

dr

(a) Use wxMaxima to find the length of a diatomic molecule in terms of A and B.
Hints: before using A and B as constants, you have to tell wxMaxima by using
declare(A,constant) and similar for B. Also, when you solve your equation
you will have to select only the positive real solution from your list, since r
represents separation distance. You can extract this solution for later use by
using R:rhs(%N) where N is the number of the solution in the list (rhs selects
only the right hand side of an equation).

(b) Find the force between the atoms at the separation distance found in part (a).
Keep simplifying until you obtain the answer you expect. ratsimp will come in
handy.

11. Data are taken by a position sensor every 0.05 seconds, yielding the following
ordered pairs:

t(s)......x(m)

.00 .12

.05 .17

.10 .21

.15 .24

.20 .22

.25 .23

.30 .23

.35 .21

.40 .18

.45 .14

.50 .09

.55 .02

.60 -.05

.65 -.14

.70 -.25
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.75 -.38

.80 -.55

Create a list (T) of all the t coordinates and a list (X) of all the x coordinates. Then
use makelist to create a list of ordered pairs (t, x). Use makelist to compute the
average velocity at t = .025, .075, ... by using the slope of each line segment
connecting consecutive position-time points, then make a list of ordered pairs (t, v).
Finally, use makelist to compute the average acceleration at t = .05, .10, ..., and
make a list of ordered pairs (t, a). Make a color coded plot of x(t), v(t) and a(t).
Note: physics labs frequenty make use of position sensors that are processed in this
way to create graphs of velocity and acceleration!
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5.1 Riemann Sums: Left, Right and Middle

Suppose we wish to determine the area between a function f(x) and the x-axis on the
interval [a, b] (this is sometimes referred to as The Area Problem). One way of
approximating such an area is to break it into narrow rectangles, with f(x) determining
the height of each rectangle. The sum of the rectangle areas is called a Riemann sum.

To compute a Riemann sum, we break the interval [a, b] into n slices, defining a sequence
of x values to mark the cut points: a = x0, x1, x2, . . . , xn−1, xn = b. It is not necessary for
the slices to have equal width, but we will choose slices of equal width when we can
(sometimes “real world” data makes this impossible).

For now, we restrict ourselves to the case of equally spaced xi’s, so we can say that
xi − xi−1 = b−a

n = ∆x. We define left, right and midpoint Riemann sums as follows:

A left sum is found by using the left side of each “slice” to find the height of each
rectangle in the sum. We add the rectangle areas to obtain:

f(x0) ·∆x+ f(x1) ·∆x+ · · ·+ f(xn−1) ·∆x =

n∑
i=1

f(xi−1) ·∆x

A right sum is found by using the right side of each “slice” to find the height of each
rectangle in the sum. We add the rectangle areas to obtain:

f(x1) ·∆x+ f(x1) ·∆x+ · · ·+ f(xn) ·∆x =

n∑
i=1

f(xi) ·∆x

A midpoint sum is found by using the midpoint of each “slice” to find the height of
each rectangle in the sum. We add the rectangle areas to obtain:

f

(
x0 + x1

2

)
∆x+ f

(
x1 + x2

2

)
∆x+ · · ·+ f

(
xn−1 + xn

2

)
∆x =

n∑
i=1

f

(
xi−1 + xi

2

)
∆x

Note: in all cases, we are defining the “height” of a rectangle by a value of f(x). When
f(x) is negative, the area contribution will be negative. Sometimes we use the phrase
signed area to clarify what we are computing with a Riemann sum.

Example 5.1.1. Approximate the area bounded by f(x) = 6x− x2 on [0, 2] by breaking
the interval into twenty equal pieces and using wxMaxima’s summation notation to
compute the left sum of the rectangle areas. Produce a plot of f(x) together with the
rectangles used in the Riemann sum. Repeat the area approximation with a right sum,
including the appropriate plot. Which of your approximations is an underestimate?
Which is an overestimate? Explain.

We compute ∆x, define the xi’s for the cut points along [0, 2] (as functions of i), define
f(x) and compute the left sum:
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(%i1) delx:(2-0)/20$

(%i2) x(i):=’’delx*i;

(%o2) x(i):=1/10*i

(%i3) f(x):=6*x-x^2$

(%i4) float(sum(f(x(i-1))*delx,i,1,20));

(%o4) 8.93

We produce a plot of the Riemann sum by first using makelist to generate rectangles:

(%i5) RECTANGLES:makelist(rectangle([x(i-1),0],[x(i),f(x(i-1))]),i,1,20)$

(%i6) load(draw)$

(%i7) wxdraw2d(

grid=true,

xrange=[0,2],

yrange=[0,10],

title="Left Riemann Sum for f(x) on [0,2]",

fill_color=red,

border=true,

RECTANGLES,

color=black,

explicit(f(x),x,0,2)

);

Now we compute the right sum:

(%i8) float(sum(f(x(i))*delx,i,1,20));

(%o8) 9.73

We finish by producing a plot of the right sum:

(%i9) RECTANGLES:makelist(rectangle([x(i-1),0],[x(i),f(x(i))]),i,1,20)$

(%i10) wxdraw2d(

grid=true,

xrange=[0,2],

yrange=[0,10],

title="Right Riemann Sum for f(x) on [0,2]",

fill_color=red,

border=true,

RECTANGLES,

color=black,

108



explicit(f(x),x,0,2)

);

To summarize, the left sum approximation is 8.93 which is an underestimate of the true
area (we see that every rectangle leaves a gap below f(x)). The right sum approximation
is 9.73 which is an overestimate of the true area (every rectangle has a small piece lying
above the graph of f(x)). The real answer must be somewhere between these two
estimates.

Example 5.1.2. For the same function f(x) = 6x− x2 compute the n = 20 midpoint
sum on [0, 2], and make a plot of the Riemann sum. How does the numerical answer
compare to the left and right sums in the previous examples? Explain why midpoint
sums are generally more accurate than left or right sums.

First, we define a midpoint of the ith sub-interval, then adjust our numerical computation
and the definition of the rectangles:

(%i11) xmid(i):=(x(i-1)+x(i))/2$

(%i12) float(sum(f(xmid(i))*delx,i,1,20));

(%o31) 9.335000000000001

(%i13) RECTANGLES:makelist(rectangle([x(i-1),0],[x(i),f(xmid(i))]),i,1,20)$

(%i14) wxdraw2d(

grid=true,

xrange=[0,2],

yrange=[0,10],

title="Midpoint Riemann Sum for f(x) on [0,2]",

fill_color=red,

border=true,

RECTANGLES,

color=black,

explicit(f(x),x,0,2)

);
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We see that midpoint rectangles offer a more accurate area approximation because each
rectangle has both underestimates and overestimates offsetting each other (at least
partially). As expected, the numerical approximation 9.335 lies between the estimates
given by the left and right sums.
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5.2 The Definite Integral

Riemann sums become more accurate as the rectangles become more narrow. Regardless
of the approximation scheme we choose (left, right or middle), the Riemann sum
approaches the correct value of area in the limit as n→∞. In fact, the choice of x value
in the ith sub-interval is irrelevant – we can compute the height of each rectangle at any
x∗i in the interval [xi−1, xi] and the area still converges correctly in the limit.
Conceptually, we simply make the sub-intervals so narrow that the error committed by
each rectangle approaches zero.

The area bounded by f(x) on [a, b] is called the definite integral :

A =

∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(x∗i ) ·∆x

It is usually not possible to symbolically take this limit, because finding a closed
expression for the sum of n terms is only possible in special cases. We illustrate with one
symbolic example and one numerical example.

Example 5.2.1. Compute

∫ 5.2

1.5

0.12x3 − 0.05x2 + 3.1x+ 0.9 dx using a limit of a right

sum.

We start by defining f(x) and computing ∆x (as a function of n) and xi (as a function of
n and i) in order to simplify the process. Note that we must use simpsum to simplify the
sum before applying the large-n limit.

(%i1) f(x):=0.12*x^3-0.05*x^2+3.1*x+0.9$

(%i2) delx(n):=(5.2-1.5)/n$

(%i3) x(n,i):=1.5+i*delx(n)$

(%i4) ratprint:false$

(%i5) sum(f(x(n,i))*delx(n),i,1,n), simpsum;

(%o5) (3.7*((151959*n^4+303918*n^3+151959*n^2)/(100000*n^3)

+(134162*n^3+201243*n^2+67081*n)/(60000*n^2)+(1739*n^2+1739*n)

/(250*n)+(2337*n)/400))/n

(%i6) fullratsimp(%);

(%o6) (183750769*n^2+148176453*n+29277434)/(3000000*n^2)

(%i7) float(limit(%,n,inf));

(%o7) 61.25025633333333

Example 5.2.2. Use a for-do loop to approximate

∫ π
2

0

sinx dx using right sums with

n = 10, n = 20, ... , n = 300. What do you think the exact value of the area is? Repeat
your calculation using left and midpoint sums instead of right sums. Make a color-coded
plot of the three area approximations as a function of n to illustrate how they converge.

(%i8) kill(all)$

(%i9) f(x):=sin(x)$

delx(n):=(%pi/2-0)/n$

x(n,i):=0+i*delx(n)$
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RSUM(n):=sum(f(x(n,i))*delx(n),i,1,n)$

(%i10) (print("n...RIGHT SUM"),

for k:1 thru 30 do

(n:(10*k),

S:float(RSUM(n)),

print(n,"","","",S))

);

To compute the left and midpoint sums, we just have to make small tweaks to the code.
All three printouts are shown side-by-side below:

(%i11) LSUM(n):=sum(f(x(n,(i-1)))*delx(n),i,1,n)$

(%i12) MSUM(n):=sum(f((x(n,i-1)+x(n,i))/2)*delx(n),i,1,n)$

(%i13) (print("n...LEFT SUM"),

for k:1 thru 30 do

(n:(10*k),

S:float(LSUM(n)),

print(n,"","","",S))

);

(%i14) (print("n...MIDPOINT SUM"),

for k:1 thru 30 do

(n:(10*k),

S:float(MSUM(n)),

print(n,"","","",S))

);
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n...RIGHT SUM n...LEFT SUM n...MIDPOINT SUM

10 1.076482802694102 10 0.91940317001461 10 1.001028824142708

20 1.038755813418405 20 0.96021599707866 20 1.000257067197303

30 1.025951465275319 30 0.97359158771549 30 1.00011424066727

40 1.019506440307854 40 0.98023653213798 40 1.000064258127218

50 1.015625715211671 50 0.98420978867577 50 1.000041124535493

60 1.013032852971294 60 0.98685291419138 60 1.000028558454002

70 1.011178010806898 70 0.98873806328126 70 1.000020981610027

80 1.009785349217536 80 0.9901503951326 80 1.000016063989881

90 1.008701261346111 90 0.99124796882617 90 1.00001269250526

100 1.007833419873582 100 0.99212545660563 100 1.000010280911905

110 1.007122990125334 110 0.99284302351811 110 1.000008496610797

120 1.006530705712648 120 0.99344073632269 120 1.000007139506457

130 1.006029357632129 130 0.99394630896448 130 1.000006083361951

140 1.005599496208463 140 0.99437952244564 140 1.000005245344728

150 1.005226849216687 150 0.99475487370472 150 1.000004569275912

160 1.004900706603708 160 0.99508322956124 160 1.000004015963601

170 1.004612874419607 170 0.9953728960267 170 1.000003557392221

180 1.004356976925686 180 0.99563033066571 180 1.00000317310517

190 1.004127978782629 190 0.99586062969423 190 1.000002847883216

200 1.003921850392743 200 0.99606786875877 200 1.000002570214103

210 1.003735328738398 210 0.99625534622985 210 1.000002331259568

220 1.003565743368066 220 0.99642576006445 220 1.000002124143224

230 1.003410887725203 230 0.99658133847827 230 1.000001943450265

240 1.003268922609553 240 0.99672393791457 240 1.000001784869924

250 1.003138302783291 250 0.99685511747611 250 1.000001644935961

260 1.00301772049704 260 0.99697619616321 260 1.000001520835631

270 1.002906061553401 270 0.99708829738009 270 1.000001410267224

280 1.002802370776596 280 0.99719238389519 280 1.000001311332571

290 1.002705824619814 290 0.9972892855619 290 1.00000122245502

300 1.002615709246299 300 0.99737972149032 300 1.000001142316237

All three sums approach 1 as n becomes larger. Note that the midpoint sum approaches 1
much faster than the left or right sums – it is simply a more powerful approximation
scheme!

To illustrate the behavior of all three limits, we plot all the approximated areas in a single
color-coded graph:

(%i15) R:makelist([10*k,float(RSUM(10*k))],k,1,30)$

L:makelist([10*k,float(LSUM(10*k))],k,1,30)$

M:makelist([10*k,float(MSUM(10*k))],k,1,30)$

(%i16) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[0,300],

yrange=[.9,1.1],

point_type=7,

color=red,
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points(R),

color=blue,

points(L),

color=black,

points(M)

);

We see that all three limits approach 1, but the midpoint sum settles down much faster
than the left and right sums.
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5.3 wxMaxima’s Definite Integral Commands

As you might expect, wxMaxima can directly compute definite integrals using integrate.

Example 5.3.1. Compute

∫ 5.2

1.5

0.12x3 − 0.05x2 + 3.1x+ 0.9 dx and

∫ π
2

0

sinx dx by

using integrate directly.

(%i1) float(integrate(0.12*x^3-0.05*x^2+3.1*x+0.9,x,1.5,5.2));

(%o1) 61.25025633333333

(%i2) float(integrate(sin(x),x,0,%pi/2));

(%o2) 1.0

We obtain the same solutions we computed as limits of Riemann sums.

Example 5.3.2. Sometimes it is useful to visualize an integral as a shaded area. Define
f(x) = e−x cos 4x on [0,∞] and find the locations of the first two roots, x1 and x2. Use
integrate to compute the areas bounded on [0, x1] and [x1, x2], then shade the positive
area in red and the negative area in blue.

We start by making a quick sketch of f(x) to find the approximate location of the roots:

(%i1) f(x):=%e^(-x)*cos(4*x)$

wxdraw2d(

grid=true,

xaxis=true,

explicit(f(x),x,0,10)

);

We see roots on [0, 1] and [1, 1.5].

Now we apply find_root to determine x1 and x2:

(%i3) x1:find_root(f(x),x,0,1);

(%o3) 0.39269908169872

(%i4) x2:find_root(f(x),x,1,1.5);

(%o4) 1.178097245096172
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Now we can compute the requested areas:

(%i5) ratprint:false$

(%i6) float(integrate(f(x),x,0,x1));

float(integrate(f(x),x,x1,x2));

(%o6) 0.21770162509548

(%o7) -0.23131667717277

We see that the area above the x-axis counts as positive, and the area below the x-axis
counts as negative, as expected. Finally, we produce a nice plot with the requested
shading. Note that filled_func shades the area between two curves, so in each case we
must specify the second curve, y = 0 (the x axis).

(%i8) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

title="f(x) with shaded areas on [0,x_2]",

color=black,

fill_color=red,

filled_func=f(x),

explicit(0,x,0,x1),

filled_func=false,

explicit(f(x),x,0,x1),

fill_color=blue,

filled_func=f(x),

explicit(0,x,x1,x2),

filled_func=false,

explicit(f(x),x,x1,x2)

);

Example 5.3.3. An area function, A(x) is one example of an integral with a variable

limit of integration. For example, A(x) =

∫ x

1

ln t dt computes the area bounded by the

natural log function on [1, x]. Note that we changed to integrating with respect to t
because we didn’t want to use x to mean two different things (t is called a “dummy
variable” because it doesn’t matter what we call it – once the integral is computed, all
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that remains is a function of x). Define A(x) appropriately in wxMaxima, then use it to
find the area bounded by y = lnx on [3, 4]. Verify by directly using integrate on [3, 4].

To illustrate what the area function is doing, we make pictures of A(3) =

∫ 3

1

ln t dt and

A(4) =

∫ 4

1

ln t dt:

(%i9) f(t):=log(t)$

A(x):=integrate(f(t),t,1,x)$

(%i11) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[0,5],

yrange=[-2,2],

title="A(3) plotted as a shaded area",

color=black,

fill_color=red,

filled_func=f(x),

explicit(0,x,1,3),

filled_func=false,

explicit(f(x),x,0,5)

);

(%i12) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[0,5],

yrange=[-2,2],

title="A(4) plotted as a shaded area",

color=black,

fill_color=red,

filled_func=f(x),

explicit(0,x,1,4),

filled_func=false,

explicit(f(x),x,0,5)

);
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The area bounded on [3, 4] is simply the difference in the two areas: A(4)−A(3):

(%i13) A(4)-A(3);

(%o13) 4*log(4)-3*log(3)-1

Now we verify by using integrate directly:

(%i14) integrate(f(x),x,3,4);

(%o14) 4*log(4)-3*log(3)-1

Note that the starting point (lower limit) of A(x) is irrelevant to the outcome of this
problem. We conclude that definite integrals can be written as differences of area
functions – this idea is key to motivating the Fundamental Theorem of Calculus (which
we see in more detail in Module 6).

Example 5.3.4. Attempt to compute

∫ 2

1

cosx

x
dx using integrate. What happens?

Now attempt the integral using quad_qag (one of many built-in numerical integration
tools).

(%i15) f(x):=cos(x)/x$

integrate(f(x),x,1,2);

(%o15) -gamma_incomplete(0,2*%i)/2+gamma_incomplete(0,%i)/2

+gamma_incomplete(0,-%i)/2-gamma_incomplete(0,-2*%i)/2

It looks like wxMaxima can’t handle this integral! Now we apply quad_qag. The syntax
of quad-qag is the same as integrate except it requires an additional integer between 1
and 6 indicating a particular approximation method (the method doesn’t matter for our
purposes). The output of quad-qag lists four numbers: the first one is an approximation
of the integral, and the second is an approximation of the error.

(%i16) quad_qag(f(x),x,1,2,1);

(%o16) [0.085576905873897,5.8823808359011771*10^-13,15,0]

We conclude that

∫ 2

1

cosx

x
dx ≈ 0.086
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5.4 Approximating Area From a List of Data

Realistic data is usually presented as a list of discrete values. If we are presented with

data in the form of ordered pairs (x, f(x)) on [a, b] we can approximate

∫ b

a

f(x) dx by

using rectangles or trapezoids. More sophisticated methods are usually covered in the
second semester of calculus.

Example 5.4.1. Suppose that the following list of ordered pairs (x, f(x)) was obtained
in a simple physics experiment:

(0.34,5.11)

(0.36,4.56)

(0.39,4.40)

(0.44,3.99)

(0.50,3.41)

(0.55,3.37)

(0.65,2.75)

(0.72,2.12)

(0.81,1.78)

(0.90,1.10)

Use a left rectangular approximation to find

∫ .90

.34

f(x) dx. Make a plot to illustrate the

approximation.

We begin by making lists of the x and y coordinates, then we use makelist to create a
set of ordered pairs (in this format, all coordinates and ordered pairs will be easy to
“call” later in the calculation).

(%i1) X:[.34,.36,.39,.44,.50,.55,.65,.72,.81,.9]$

Y:[5.11,4.56,4.40,3.99,3.41,3.37,2.75,2.12,1.78,1.1]$

(%i2) L:makelist([X[i],Y[i]],i,1,10)$

We have to come up with a general expression for the area of a rectangle (with height
defined at its left side), remembering that the notion of a constant ∆x no longer applies.
Finally, we sum all the rectangles:

(%i3) RECTANGLE(i):=(Y[i])*(X[i+1]-X[i])$

(%i4) sum(RECTANGLE(i),i,1,9);

(%o4) 1.7494

So

∫ .90

.34

f(x) dx ≈ 1.7494.

A plot helps to illustrate what we have done:

(%i5) RECTANGLES:makelist(rectangle([X[i],0],[X[i+1],Y[i]]),i,1,9)$

(%i6) wxdraw2d(

grid=true,

xaxis=true,

xrange=[.3,1],
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yrange=[0,5.5],

title="Left Rectangle Approximation For Integral of f(x)",

fill_color=red,

color=black,

border=true,

RECTANGLES,

point_type=7,

points(L)

);

Note that the left rectangular approximation appears to be a gross overestimate of the
true area, since f(x) is decreasing.

Example 5.4.2. Improve on the rectangular approximation of

∫ .90

.34

f(x) dx by using

trapezoids instead of rectangles. Make a plot to illustrate the approximation.

We can state the area of each trapezoid as A = 1
2 (h1 + h2) · b:

(%i7) TRAPEZOID(i):=0.5*(Y[i]+Y[i+1])*(X[i+1]-X[i])$

(%i8) sum(TRAPEZOID(i),i,1,9);

(%o8) 1.6139

We see that
∫ .90
.34

f(x) dx ≈ 1.614. As expected, this result is less than the result obtained
by left rectangles.
To plot the trapezoid approximation, we have to use polygon, which expects the vertices
of a polygon to be listed in order around each trapezoid.

(%i9) TRAPEZOIDS:makelist(polygon([[X[i],0],[X[i+1],0],[X[i+1],Y[i+1]],

[X[i],Y[i]]]),i,1,9)$

(%i10) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[.3,1],

yrange=[0,5.5],

title="Trapezoid Approximation for the Integral of f(x)",

fill_color=red,
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color=black,

border=true,

TRAPEZOIDS,

point_type=7,

points(L)

);
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5.5 Module 5 Exercises

1. In the style of Example 5.1.1, find and plot the n = 30 left and right Riemann sums
for f(x) = 1

x on [1, 3]. Which is an overestimate? Which is an underestimate?

2. Use a do-loop to produce a sequence of midpoint sums with n = 10, n = 20, ...,
n = 100 to approximate the area bounded by e−x

2

and the x-axis on [−10, 10].
Compare to the answer obtained by applying integrate (you will have to force a
numerical response using float).

3. In the style of Example 5.2.1, compute

∫ 1

0

x2 dx by applying limit to a Riemann

sum.

4. Define f(x) = sinx on [0, 2π]. Make a plot of f(x) with the positive and negative
areas shaded in red and blue, respectively. Based on the graph, what do you think

the value of

∫ 2π

0

f(x) dx is? Verify using integrate.

5. Define an area function with a “starting point” of x = 0 for cosx, then use the area
function to compute the area bounded on [1, 2]. Verify by computing the area using
a single integral.

6. Define area functions F (x) and G(x) for the two functions f(x) = 1
x and g(x) = 1

x2 ,
each with a starting point of x = 1. Use a do-loop to produce a list of areas on
x = [1, 10], [1, 100], . . . , [1, 1010] for each function. Based on your results, what are

the values of

∫ ∞
1

1

x
dx and

∫ ∞
1

1

x2
dx?

7. Symmetry can frequently be used to provide a useful shortcut when computing a
definite integral over an interval symmetric about the origin. Consider
f(x) = coshx and g(x) = sinhx on [−1, 1]. Test each function’s parity in
wxMaxima. Which is even? Which is odd? Produce plots of f(x) and g(x) with the

signed areas shaded. Do you see how to simplify

∫ 1

−1
f(x) dx and

∫ 1

−1
g(x) dx?

Compute the integrals using your simplifications, then test your answers by directly
computing the integrals.

8. To compute the total potential energy stored in a spring (at a stretch length of L),

we need to compute W =

∫ L

0

F (x) · dx, where F (x) is the force applied to the

spring in order to stretch it to a length of x (relative to the “natural” length). The
following data set is obtained as a spring is stretched from its natural length x = 0
to a final length of L = .51 m. Use a trapezoid approximation to compute the total
energy stored in the spring (the units come out as Joules). Include a plot of the
data points and the trapezoids.

x(m)........F(x)(N)

.05 10

.09 20

.14 30
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.19 40

.27 50

.38 60

.44 70

.48 80

.51 90

What is the physical meaning of the area function A(x) =

∫ x

0

F (t) · dt?

9. A velocity-time graph shows the velocity of an object (in m/s) as a function of time
(in s). Suppose that a velocity function is given as v(t) = 0.2 · t2. How fast is the
object moving at t = 1.5s? Assuming the object can’t change its velocity too fast,
about how far will it move in the next .05s? What does your calculation correspond
to geometrically on the graph of v(t)? Make a plot to illustrate. Now repeat this
procedure every .05s from t = 1.5s to t = 3s. Find the total area of all the rectangles
and interpret your result. Finally, verify the answer directly using integrate.

10. A car is pinged by a radar gun every 0.2s, and the following velocity data are
obtained:

t(s)........v(m/s)

0.2 +35.0

0.4 +35.2

0.6 +35.0

0.8 +35.1

1.0 +34.9

1.2 +35.1

1.4 +34.5

1.6 +33.0

1.8 +31.2

2.0 +26.8

2.2 +22.5

2.4 +18.7

2.6 +15.0

2.8 +11.6

3.0 +7.5

3.2 +4.1

3.4 +1.3

3.6 0

3.8 0

4.0 0

Use a trapezoid approximation to compute the total distance the car moved during
this process. Include a plot with all data points and shaded trapezoids. Describe
what happened (physically) around 1.2s.
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6.1 Antiderivatives

F (x) is an antiderivative of f(x) if F ′(x) = f(x). There are infinitely many
antiderivatives of f(x) corresponding to different additive constants.

Example 6.1.1. Show that F (x) = 1
3 · x

3 is an antiderivative of f(x) = x2, then show
that F (x) + C is also an antiderivative of f(x), where C is a constant. Make a plot of
f(x) together with several of its antiderivatives.

We quickly verify that F ′(x) = f(x):

(%i1) F(x):=(1/3)*x^3$

diff(F(x),x);

(%o1) x^2

Now we generalize to F (x) + C, indicating to wxMaxima that C is a constant using
declare:

(%i2) declare(C,constant)$

A(x):=F(x)+C$

(%i4) diff(A(x),x);

(%o4) x^2

The derivative still yields f(x).

Finally, we produce a plot of f(x) together with many antiderivatives corresponding to
different values of C. We use makelist to quickly generate the “family” of curves:

(%i5) f(x):=x^2$

(%i6) FAMILY: makelist(explicit(F(x)+5*i,x,-6,6),i,-20,20)$

(%i7) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[-6,6],

yrange=[-50,50],

title="f(x) together with many antiderivatives, F(x)",

color=red,

FAMILY,

color=black,

line_width=2,

explicit(f(x),x,-6,6)

);
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Example 6.1.2. For f(x) = cos(5x), take a first guess at the antiderivative:
F (x) = sin(5x). What goes wrong with the guess? Now adjust the guess appropriately
and verify that it works.

(%i8) F(x):=sin(5*x)$

diff(F(x),x);

(%o8) 5*cos(5*x)

We see that F ′(x) “misses” by a factor of 5 as a consequence of the chain rule, but it is
simple to compensate by tacking on a factor of 1

5 :

(%i9) F(x):=(1/5)*sin(5*x)$

diff(F(x),x);

(%o9) cos(5*x)

The most general antiderivative of f(x) = cos(5x) is F (x) = 1
5 sin(5x) + C, where C is an

arbitrary constant.

Example 6.1.3. Verify that F (x) = 1
n+1x

n+1 is an antiderivative of f(x) = xn (provided
that n 6= −1).

(%i10) F(x):=(1/(n+1))*x^(n+1)$

(%i11) diff(F(x),x);

(%o11) x^n

Example 6.1.4. Suppose that f ′(x) = x2 − 3x+ 5. Find and plot the particular function
f(x) passing through the point (1, 1).

Note that we have shifted our notation for this example, but we are still guessing an
antiderivative: f(x) is the antiderivative of f ′(x). We guess (and verify) the
antiderivative by applying the formula 1

n+1x
n+1 to each power of x. Since derivatives

respect linear combinations, we can find the antiderivative term-by-term and treat the
constant coefficients as spectators:
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(%i12) f(x):=(1/3)*x^3-3*(1/2)*x^2+5*x$

(%i13) diff(f(x),x);

(%o13) x^2-3*x+5

The most general antiderivative is f(x) = 1
3x

3 − 3
2x

2 + 5x+C. This is a family of curves,
but we want to find the unique curve passing through (1, 1). In other words, we have to
apply the condition f(1) = 1 and solve for C:

(%i14) fgen(x):=f(x)+C$

(%i15) solve(fgen(1)=1,C);

(%o15) [C=-17/6]

Finally, we make a plot of f(x):

(%i16) particular(x):=f(x)-17/6$

(%i17) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[-5,5],

yrange=[-20,20],

title="solution of f_prime(x)=x^2-3x+5 passing through (1,1)",

color=black,

explicit(particular(x),x,-5,5),

point_type=7,

points([[1,1]])

);
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6.2 The Fundamental Theorem of Calculus

6.2.1 Area Functions

For a function f(x), we define an area function that integrates from a starting point c

to a variable end point x: A(x) =

∫ x

c

f(t) dt. Recall that t is introduced as a “dummy

variable” here: we are still talking about the area under f(x), but we use a different letter
for the integration variable because x is already used for the variable right end of the
integration interval.

Any area under f(x) can be computed as a difference of area functions, as illustrated in
Module 5. The bounded area on [a, b] is computed as A(b)−A(a).

If we zoom in on a very narrow strip of area, say the area bounded on [x, x+ h], we
discover that there are two ways to represent the area: as a simple rectangle
AREA = f(x) · h or as a difference of area functions AREA = A(x+ h)−A(x). The
rectangle is an approximation, but it will become more precise as h becomes smaller.

Example 6.2.1. For f(x) = ex, compute the area bounded on [3, 3.05] in two different
ways: as a rectangle with height f(3) and as a difference of area functions. In each case,
illustrate the calculation with an appropriate plot. How much error is committed by the
rectangle approximation?

We begin by using the rectangle approximation AREA = f(3) · (0.05), then we plot f(x)
along with the thin rectangular “slice”:

(%i1) f(x):=%e^x$

(%i2) float(f(3)*0.05);

(%o2) 1.004276846159383

(%i3) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[2.8,3.2],

yrange=[0,30],

title="Rectangle approximation to area bounded on [3,3.05]",

color=black,

explicit(f(x),x,2.8,3.2),

fill_color=red,

rectangle([3,0],[3.05,f(3)])

);

Now we define an area function A(x) =

∫ x

0

et dt and compute

AREA = A(3.05)−A(3.00). Remember that the starting point for the area function is
not important – we just choose t = 0 because it “looks nice”.

(%i4) A(x):=integrate(f(t),t,0,x)$

(%i5) ratprint:false$

float(A(3.05)-A(3));
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(%o6) 1.029807499352945

(%i7) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[2.8,3.2],

yrange=[0,30],

title="Exact area bounded on [3,3.05]",

color=black,

explicit(f(x),x,2.8,3.2),

filled_func=true,

filled_func=f(x),

explicit(0,x,3,3.05),

filled_func=false

);

Finally, we compute the percent error committed by the rectangle approximation:

(%i8) float(A(3.05)-A(3.00)-f(3)*0.05);

(%o8) 0.025530653193553

(%i9) PERCENT_ERROR:100*%/(A(3.05)-A(3.0));

(%o9) 2.479167534669774

6.2.2 The Fundamental Theorem

The previous example provides us with geometric motivation for the Fundamental
Theorem of Calculus (FTC). We can equate the two representations of area to write
f(x) · h = A(x+ h)−A(x) in the limit h→ 0. If we divide by h, we see a derivative of

A(x) on the right hand side: f(x) = lim
h→0

A(x+ h)−A(x)

h
= A′(x). In other words, the

area function is an antiderivative of f(x).

Thus, to compute the area bounded by f(x) on [a, b], we can guess an antiderivative A(x)
and evaluate A(b)−A(a) (another notation for the difference is A(x)|ba). Note that the
arbitrary constant is irrelevant because it will cancel in the difference. The FTC provides
a powerful symbolic tool that allows us to compute definite integrals without the need for
a complicated limiting process or approximation scheme.
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Example 6.2.2. Guess the antiderivative of e−2x, then compute

∫ 3

1

e−2x dx by applying

the FTC. Verify your answer using integrate.

The natural exponential is equal to its own derivative, so a reasonable first guess at the
antiderivative is e−2x. Then we check the answer:

(%i10) diff(%e^(-2*x),x);

(%o10) -2*%e^(-2*x)

We see that we missed by a factor of −2 because the chain rule tacks on a factor of
d
dx (−2x) = −2. We compensate by tacking on a factor of − 1

2 to obtain F (x) = − 1
2e
−2x.

We check our answer quickly then apply the FTC by evaluating F (3)− F (1):

(%i11) F(x):=-(1/2)*%e^(-2*x)$

diff(F(x),x);

(%o11) %e^(-2*x)

(%i12) F(3)-F(1);

(%o12) %e^(-2)/2-%e^(-6)/2

(%i13) float(%);

(%o13) 0.066428265529973

Verifying with integrate:

(%i14) float(integrate(%e^(-2*x),x,1,3));

(%o14) 0.066428265529973
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6.3 Computing Integrals

6.3.1 Basic Antiderivatives

The FTC tells us that definite integrals (at least those performed symbolically) boil down
to finding antiderivatives. We use the term indefinite integral as a synonym for

antiderivative, and we write it as an integral with no limits: F (x) =

∫
f(x) dx. If we

wish to evaluate a definite integral on [a, b], we simply evaluate the difference
F (b)− F (a). wxMaxima can compute many indefinite integrals using integrate, though
many integrals simply have no symbolic solution.

Example 6.3.1. Compute

∫
1

1 + x2
dx, then verify your solution using diff.

(%i1) integrate(1/(1+x^2),x);

(%o1) atan(x)

(%i2) diff(%,x);

(%o2) 1/(x^2+1)

Example 6.3.2. Find a decimal approximation of

∫ 2

1

sinx cosx dx by computing the

indefinite integral first, then evaluating at the limits of integration. Verify your answer by
directly computing the definite integral.

(%i3) f(x):=cos(x)*sin(x)$

F:integrate(f(x),x);

(%o3) -cos(x)^2/2

(%i4) float(subst(2,x,F)-subst(1,x,F));

(%o4) 0.059374196079117

(%i5) float(integrate(f(x),x,1,2));

(%o5) 0.059374196079117

Example 6.3.3. Define f(x) = e−x
2

and compute

∫
f(x) dx. Comment on the special

function wxMaxima uses in the result.

(%i6) f(x):=%e^(-x^2)$

(%i7) integrate(f(x),x);

(%o7) (sqrt(%pi)*erf(x))/2

wxMaxima states its solution in terms of the special function erf(x) (the “error

function”). A quick search reveals that erf(x) = 2√
π

∫ x

0

e−x
2

dx. In other words,

wxMaxima has failed to find a symbolic solution to the integral: erf(x) is simply the area

function corresponding to e−x
2

.

∫
e−x

2

dx is actually a very common integral (especially

in probability calculations), yet it cannot be solved symbolically! We can, of course,
obtain numerical approximations of the definite integral if desired.

131



Example 6.3.4. Compute

∫
sin2 x dx by guessing the antiderivative. Hint: trigreduce

will come in handy.

It is not simple to guess the antiderivative of sin2 x. A first guess might be F (x) = 1
3 sin3 x

or G(x) = 1
3 cos3 x, but neither of these will work (the chain rule produces extra factors):

(%i8) F(x):=(1/3)*(sin(x))^3$

diff(F(x),x);

(%o9) cos(x)*sin(x)^2

(%i10)G(x):=(1/3)*(cos(x))^3$

diff(G(x),x);

(%o10) -cos(x)^2*sin(x)

We apply trigreduce to transform the integrand:

(%i11) f(x):=(sin(x))^2$

trigreduce(%);

(%o12) f(x):=(1-cos(2*x))/2

With the integrand split into two pieces, it is not hard to guess the antiderivative of each
piece: f(x) = 1

2 −
1
2 cos (2x) =⇒ F (x) = 1

2x−
1
4 sin (2x).

We quickly verify by using integrate:

(%i13) integrate(f(x),x);

(%o13) (x-sin(2*x)/2)/2

6.3.2 Substitutions

When computing indefinite integrals by hand, it is often necessary to recognize the effects
of the chain rule. This process is formalized by performing a substitution to transform
the integral into a simpler form.

To perform a u-substitution, we:

1. Decide on a substitution and use diff to produce the differential du (called
del(u)) in wxMaxima), then express dx in terms of du using solve.

2. Extract the resulting equation using %[1] and replace del(x) with its expression in
terms of del(u) in the integrand.

3. Use subst to transform the entire integrand in terms of u, then perform the
integral, remembering that integrate expects only the coefficient of del(u).

4. Substitute the definition of u in terms of x into the resulting antiderivative.
Alternatively, in a definite integral we can choose to transform the limits of
integration in terms of u before evaluation.
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Example 6.3.5. Compute

∫
e5x dx by explicitly performing the substitution u = 5x.

Verify your answer using diff.

(%i14) INTEGRAND:(%e^(5*x))*diff(x);

(%o14) %e^(5*x)*del(x)

(%i15) solve(diff(u)=diff(5*x),del(x));

(%o15) [del(x)=del(u)/5]

(%i16) %[1];

(%o16) del(x)=del(u)/5

(%i17) subst(rhs(%),del(x),INTEGRAND)$

subst(u,5*x,%);

(%o18) (%e^u*del(u))/5

(%i19) integrate(coeff(%,del(u)),u);

(%o19) %e^u/5

(%i20) subst(5*x,u,%);

(%o20) %e^(5*x)/5

Finally, we check our answer using diff.

(%i21) diff(%,x);

(%o21) %e^(5*x)

Example 6.3.6. Compute

∫
sec2 x

tanx
dx by using an explicit substitution to transform

the integral. Verify your answer using diff.

We notice that the derivative of tanx appears next to dx in the integrand, so we can
transform the integral into a function of u = tanx using a substitution.

(%i22) INTEGRAND:((sec(x))^2)/tan(x)*diff(x);

(%o22) (sec(x)^2*del(x))/tan(x)

(%i23) solve(diff(u)=diff(tan(x)),del(x));

(%o23) [del(x)=del(u)/sec(x)^2]

(%i24) %[1];

(%o24) del(x)=del(u)/sec(x)^2

(%i25) subst(rhs(%),del(x),INTEGRAND)$

subst(u,tan(x),%);

(%o26) del(u)/u

(%i27) integrate(coeff(%,del(u)),u);

(%o27) log(u)

(%i28) subst(tan(x),u,%);

(%o28) log(tan(x))

Checking our work:

(%i29) diff(%,x);

(%o29) sec(x)^2/tan(x)
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6.4 Area Integrals

6.4.1 Area and Physical Integration

Recall that

∫ b

a

f(x) dx gives us the area bounded between f(x) and the x-axis. It is

useful to visualize an area element at x represented by a thin rectangle of width dx. We
refer to this thin slice as dA.

Once dA is phrased entirely in terms of one variable (here, dA = f(x) · dx), we use

integration to sum up all the area elements. We can say A =

∫
dA =

∫ b

a

f(x) dx, and we

view the integral as a summation device to add up the dA’s. This conceptual approach is
often called “physical integration”, and it is very powerful when we apply integration in a
geometric setting.

Example 6.4.1. Plot f(x) = e−0.2·x · cosx on [0, π2 ] together with an area element at

x = 1. Set up the integral A =

∫
dA and write dA in terms of x to obtain a definite

integral. Finally, use wxMaxima to compute the area and make a shaded plot.

We start with the sketch of f(x) and dA:

(%i1) f(x):=%e^(-0.2*x)*cos(x)$

wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

title="f(x) with dA near x=1",

color=black,

explicit(f(x),x,0,%pi/2),

border=false,

color=red,

rectangle([1,0],[1.05,f(1.05)]),

color=black,

label(["dA",0.95,0.2])

);
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dA is just the product of height and width for the area element: f(x) · dx. Now we set up

the integral: A =

∫
dA =

∫
f(x) dx =

∫ π
2

0

e−0.2·x · cosx dx

The integral is simple to compute using integrate. We start with ratprint:false to
suppress a list of ratprint warnings, and we find a decimal approximation using float:

(%i2) ratprint:false$

(%i3) integrate(f(x),x,0,%pi/2);

(%o3) (25*%e^(-%pi/10))/26+5/26

(%i4) float(%);

(%o4) 0.89461797216216

We finish with a shaded plot:

(%i5) wxdraw2d(

grid=true,

xrange=[-0.5,2],

yrange=[-0.5,1.2],

xaxis=true,

yaxis=true,

title="Area Bounded by f(x) on [0,pi/2]",

fill_color=grey,

filled_func=true,

filled_func=f(x),

explicit(0,x,0,%pi/2),

filled_func=false,

color=black,

explicit(f(x),x,-0.5,2)

);

135



6.4.2 Area Bounded Between Two Functions

To compute the area bounded between two functions, we simply have to visualize an area
element and write down dA in terms of the given functions. Then we use the integral

A =

∫
dA to add up all the area elements on the appropriate interval.

Example 6.4.2. Compute the area bounded between f(x) = 2− x2 and g(x) = x.

We start with a quick sketch:

(%i6) f(x):=2-x^2$

g(x):=x$

(%i8) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[-2,2],

yrange=[-2,2],

title="Area bounded between f(x) and g(x).",

color=black,

key="f(x)",

explicit(f(x),x,-2,2),

color=red,

key="g(x)",

explicit(g(x),x,-2,2)

);
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Now we determine the appropriate integration interval: the bounded area occurs between
the two intersections of our curves.

(%i9) solve(f(x)=g(x),x);

(%o9) [x=1,x=-2]

Finally, we can visualize an area element on the integration interval and write down its
formula. Here, we use a thin rectangle to show an area element at x = −0.5:

(%i10) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[-2,2],

yrange=[-2,2],

title="Area bounded between f(x) and g(x).",

color=red,

border=false,

rectangle([-0.5,g(-0.5)],[-0.45,f(-0.45)]),

color=black,

label(["dA",-0.33,1]),

key="f(x)",

explicit(f(x),x,-2,2),

color=red,

key="g(x)",

explicit(g(x),x,-2,2)

);
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We see that the area element has a height of f(x)− g(x), so we get dA = [f(x)− g(x)] ·dx.

We add up the area elements by computing the integral A =

∫
dA =

∫ 1

−2
[f(x)− g(x)] dx:

(%i11) float(integrate((f(x)-g(x)),x,-2,1));

(%o11) 4.5

We obtain A = 4.5 units. We can also produce a filled plot of the area we have computed:

(%i12) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[-2,2],

yrange=[-2,2],

title="Area bounded between f(x) and g(x).",

fill_color=grey,

filled_func=true,

filled_func=f(x),

explicit(g(x),x,-2,1),

filled_func=false,

color=black,

key="f(x)",

explicit(f(x),x,-2,2),

color=red,

key="g(x)",

explicit(g(x),x,-2,2)

);

Example 6.4.3. Compute the area bounded between f(x) = coshx and g(x) = 5 cos 3x.
We start with a sketch:

(%i13) f(x):=cosh(x)$

g(x):=5*cos(3*x)$

wxdraw2d(

grid=true,

xaxis=true,
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yaxis=true,

xrange=[-4,4],

yrange=[-6,6],

title="Area bounded between f(x) and g(x).",

color=black,

key="f(x)",

explicit(f(x),x,-4,4),

color=red,

key="g(x)",

explicit(g(x),x,-4,4)

);

We see that both functions are even, so we can just find the area to the right of x = 0 and
double the result. To verify that the functions are even:

(%i14) f(-x);

g(-x);

(%o14) cosh(x)

(%o15) 5*cos(3*x)

We have to keep in mind that we are no longer computing signed area but geometric
area, which is always positive. Thus, when f(x) lies above g(x), the area element is
[f(x)− g(x)] · dx, but when g(x) lies above f(x), the area element becomes
[g(x)− f(x)] · dx. We have to split the integration interval into three pieces according to
the intersections of f(x) and g(x), then we add up the areas and multiply by 2:

(%i16) x1:find_root(f(x)-g(x),0,1);

x2:find_root(f(x)-g(x),1.5,2);

x3:find_root(f(x)-g(x),2,2.5);

(%o16) 0.44947432956866

(%o17) 1.792473165779467

(%o18) 2.219127938640189

(%i19) ratprint:false$

A1:float(integrate(g(x)-f(x),x,0,x1));

A2:float(integrate(f(x)-g(x),x,x1,x2));

A3:float(integrate(g(x)-f(x),x,x2,x3));

(%o20) 1.160865665363456

(%o21) 5.39123022939955

(%o22) 0.29427502144913
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(%i23) A1+A2+A3;

(%o23) 6.846370916212132

(%i24) %*2;

(%o24) 13.69274183242426

We obtain a total area A ≈ 13.7. We finish with a filled plot for the right half of the area:

(%i25) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

xrange=[0,3],

title="Area bounded between f(x) and g(x).",

fill_color=grey,

filled_func=true,

filled_func=g(x),

explicit(f(x),x,0,x1),

filled_func=false,

filled_func=true,

filled_func=f(x),

explicit(g(x),x,x1,x2),

filled_func=false,

filled_func=true,

filled_func=g(x),

explicit(f(x),x,x2,x3),

filled_func=false,

color=black,

key="f(x)",

explicit(f(x),x,0,3),

color=red,

key="g(x)",

explicit(g(x),x,0,3)

);
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6.4.3 Average Value

The average value of a function f(x) on [a, b] arises from the question, “what constant
function, g(x) = favg, would bound the same area as f(x) on [a, b]?”. Average value is
useful when we encounter functions for which the bounded area has a physical
interpretation (velocity, power, etc).

We quickly derive a formula for average value:

favg · (b− a) =

∫ b

a

f(x) dx =⇒ favg =
1

b− a

∫ b

a

f(x) dx

Example 6.4.4. Compute the average value of f(x) = ex on [1, 3].

We simply integrate and divide by the width of the interval:

(%i26) f(x):=%e^x$

(%i27) float(f_avg:(1/(3-1))*integrate(f(x),x,1,3));

(%o27) 8.683627547364312

So favg ≈ 8.7. We can visualize the area interpretation by producing two filled plots:

(%i28) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

title="Area bounded by f(x)=e^x on [1,3]",

color=black,

explicit(f(x),x,0,4),

fill_color=grey,

filled_func=true,

filled_func=f(x),

explicit(0,x,1,3),

filled_func=false

);

(%i29) wxdraw2d(

grid=true,

xaxis=true,

yaxis=true,

title="Area bounded by f_avg on [1,3]",

color=black,

explicit(f(x),x,0,4),

fill_color=grey,

filled_func=true,

filled_func=f_avg,

explicit(0,x,1,3),

filled_func=false

);
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The average value favg bounds the same area as f(x) using a simple rectangle.
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6.5 Module 6 Exercises

1. Find the antiderivatives of the following two functions using guess-and-check. Check
your guesses with diff and refine your guesses until the correct antiderivative is
obtained.

a. f(x) = A cos nπxL (A, n, L constant) b. f(x) = xe−x
2

2. Guess and check the antiderivative of f(x) = sin 2x, then use it to generate a family
of twenty antiderivatives according to different additive constants. Make a plot of
f(x) together with its antiderivatives.

3. For the previous exercise, find the antiderivative passing through the point (−2, 3).
Make a plot of this particular antiderivative showing that it passes through the
correct point.

4. Use diff to show that A(x) =

∫ x

c

f(t) dt is the antiderivative of f(x).

5. Use a difference of area functions with starting point c = −1 to compute the area
bounded by f(x) = 1√

1+x2
on [0, 1]. Check your answer directly using integrate.

Make a plot showing f(x) and the shaded area you computed.

6. Check the answer in Example 6.3.4 by using diff instead of integrate. What
happens? Manipulate wxMaxima’s output to obtain sin2 x by using trigexpand to
eliminate the “double angle” followed by subst to force the pythagorean identity
cos2 x = 1− sin2 x.

7. With practice, the formal “u-substitution” is usually seen as “obvious” and
computed mentally – we simply look at the integral as a function of u next to the
differential of u. However, there are still cases where a formal substitution is

necessary. Use the explicit substitution u =
√

2x− 1 to compute

∫
3x
√

2x− 1 dx in

the style of Examples 6.3.5 and 6.3.6. Check your answer directly with integrate.

8. When we transform a definite integral from x to u, there is no need to transform the
result back to x – we can just transform the limits of integration in terms of u and

evaluate the antiderivative on [u1, u2]:

∫ x2

x1

f(x) dx =

∫ u2

u1

g(u) du = G(u2)−G(u1)

(to find u1, we just plug x1 into the definition of u we used for the transformation,
and similar for u2). Use the substitution u = cos 2x to compute∫ π

2

π
6

sin (2x) cos5 (2x) dx. Transform the limits in terms of u rather than writing the

antiderivative in terms of x. Check your answer with integrate.

9. Recall that position, velocity and acceleration are related by v(t) = x′(t) and
a(t) = v′(t) = x′′(t). Given an acceleration function, we can derive a set of
equations describing the position and velocity of the object for any future time
(these are called the equations of motion).

Find the equations of motion for an object with constant acceleration, a. Start by
finding the antiderivative of a (including an arbitrary constant) to find v(t). Then
evaluate v(t) at t = 0 in order to determine the value of the arbitrary constant.
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Note that the standard notation for v(0) is v0, which is considered a given constant
here. Repeat the process to obtain an equation for x(t) in terms of x0, v0, a and t.

10. Find the equations of motion for an object with a(t) = x3e−.5x. Assume that
v(0) = 0 and x(0) = 0; that is, the initial position and velocity are both zero.

11. *The position of an object is the antiderivative of the velocity function, v(t) = x′(t),
so the change in position for an object (the displacement) is computed as∫ t2

t1

v(t) dt = x(t2)− x(t1). Displacements are positive when v > 0 and negative

when v < 0. If we want to measure total distance traveled, then we can do it by
counting all the negative displacements as positive. We take the absolute value of
v(t) in the integral:

DISTANCE =

∫ t2

t1

|v(t)| dt

An oscillator with decaying amplitude might have its height given by the equation
h(t) = 0.15e−.2t cos (4.45 · t) where height is measured in meters (m) and time in
seconds (s). Make a plot of h(t), then compute the total distance traveled by the
oscillator before it “essentially” settles to zero. Note that wxMaxima cannot handle
integrals involving absolute value, but you can use a do-loop to demonstrate a
sequence of distances over larger times until the answer stabilizes to at least a few
decimal places. You will have to compute many integrals by splitting the
integration interval into sections for which the integrand is positive and sections for
which the integrand is negative.

12. Power is the time rate of change in energy. For example, if the power delivered by a
light bulb is 100 Watts, it means that 100 Joules of energy are delivered per second.
The power is noted every hour at a breaker box for 12 hours and the following data
are obtained:

Power(W) .......Time (hr)

535 6:00 am

940 7:00 am

1135 8:00 am

1050 9:00 am

720 10:00 am

400 11:00 am

410 12:00 pm

390 1:00 pm

410 2:00 pm

370 3:00 pm

405 4:00 pm

890 5:00 pm

1410 6:00 pm

Since power is the time derivative of energy, we can say P (t) = E′(t). The integral∫ t2

t1

P (t) dt can be computed theoretically by finding the antiderivative of P (t) and
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evaluating it across the endpoints of the time interval:

∫ t2

t1

P (t) dt = E(t2)−E(t1).

In other words, the integral gives us the total change in energy.

Use a trapezoid approximation to find the total energy consumption for this
twelve-hour period, then compute the average power consumed.

13. Define f(x) = sinx. Consider a thin rectangular slice near x = π
2 ; that is, on the

interval [π2 ,
π
2 + h]. Use a for-do loop to compute the percent difference between

the exact bounded area and the rectangle approximation for h = 1
2i , i = 1, 2, . . . .

Keep going until your approximation commits less than 0.1% error.
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