

Wprowadzenie do programu SMath Studio Desktop

WYDZIAŁ BUDOWNICTWA, INŻYNIERII ŚRODOWISKA I ARCHITEKTURY POLITECHNIKI RZESZOWSKIEJ

> Karol Pereta Wiesław Bielak Grzegorz Piątkowski Marzec 2016 r.

1. SMath Studio – środowisko pracy	3
2. Obliczanie wartości zmiennych	4
3. OBLICZENIA SYMBOLICZNE	6
4. DEFINIOWANIE ZMIENNYCH I FUNKCJI	7
5. OBLICZENIA NA JEDNOSTKACH	
6. WSTAWIANIE I FORMATOWANIE WYKRESÓW	13
7. OBLICZENIA NA MACIERZACH	15
8. Rozwiązywanie równań i układów równań	16
Równania wielomianowe	16
Miejsca zerowe dowolnej funkcji	17
Rozwiązanie układu równań liniowych	
Rozwiązanie równań nieliniowych i układów równań nieliniowych	20
9. Programowanie	21
Instrukcja warunkowa <i>if</i>	21
Pętla iteracyjna <i>for</i>	24
Pętla warunkowa <i>while</i>	32

1. SMath Studio – środowisko pracy

SMath Studio jest darmowym programem wspomagającym obliczenia matematyczne. Jest dobrą alternatywą dla komercyjnego oprogramowania firmy MathSoft znanego pod nazwą Mathcad.

Okno dialogowe programu odzwierciedla kratkowaną kartę z zeszytu formatu A4 (Rys. 1). Wyrażenia zapisane w SMath Studio są zdecydowanie czytelniejsze od tych samych wyrażeń zapisanych w arkuszu kalkulacyjnym. Podobnie jak w arkuszu kalkulacyjnym zmiana danych wejściowych, powoduje automatyczne przeliczenie dalszych części arkusza obliczeniowego, wykorzystujących powyższe dane i wyświetlenie aktualnego wyniku (musi być włączona opcja z menu: **Obliczenia** \rightarrow **Autoobliczenia**). Program pozwala wykonywać obliczenia zarówno numeryczne jak i symboliczne (niestety w przypadku tych drugich program ma bardzo ograniczone możliwości), wyniki możemy przedstawiać w formie wielorakich wykresów. Dokument programu SMath Studio pozwala także na tworzenie opisów (dla wyrażeń i zmiennych) dzięki czemu program jeszcze bardziej przypomina zwykłą kartkę papieru.

S SMath S	itudio - [S	trona1]	-														-			×
Plik	Edytuj	Widok	Wstaw	Obl	iczenia	Nar	zędzia	Str	ony	Pomod								-	- 5	×
	Blak	Ib 🕋	12.3	10	- A		-	- 5-	f(x)	7 63	-									
				1					1						Arv	met	ka			
															00	π	i	±	10	+
															7	8	9	+	(•)	1=1
															4	5	6	-	.å	:/-
															1	2	3	×	;	\rightarrow
														- 11	,	0	1	1	:=	=
															Mac	ierze				
															(11)	=	•	Α.	M.	
															Log	ika		-	~	
															=	-	~	-	~	7
															Freed	~	~	Ð		_
															log	sign	sin	COS	ź	÷.
															In	210	to	ctg	4	7.
															evn	%	el	(1		`
														- 11	Wyl	res				
															S	+	⇔		=	÷
															Prop	ram	owan	uie		
															if	wh	ile	for	lin	ne
														=	bre	ak	co	ntin	ue	
															Sym	bole	(a-e)	-		
															α	β	γ	0	s	5
															η	9	1	к	r	μ
															ľ	S	0	π	ρ	G
															Sum	bole	φ (4-0	2	Ψ	0
															A	B	Г	Δ	E	Z
															H	Θ	I	ĸ	~	M
															N	Ξ	0	п	Р	Σ
															Т	Y	Φ	x	Ψ	Ω
															L					_
															1					
•													-	•						
Gotowe																	0	(20)	0.962	
Solowe				_	-	_					_	_	 	_	_	_	-	0 (20)	o 70)	

Rys. 1. Okno programu SMath Studio

Z prawej strony okna (Rys. 1) widoczne są paski narzędzi służące do wprowadzania różnego rodzaju znaków: arytmetycznych, macierzy, znaków logicznych, funkcji, wykresów, programowania oraz symboli greckich.

Wszystkie funkcje można odszukać w *Menu głównym* lub na jednym z pasku narzędziowym, dodatkowo większość najczęściej wykorzystywanych funkcji można wywołać za pomocą skrótów klawiszowych.

Wszystkie elementy wprowadzane do dokumentu nazywać będziemy **regionami**. Każdy z regionów zajmuje pewien minimalny dla niego obszar dokumentu. W zależności od charakteru wprowadzonego elementu rozróżniamy:

- regiony równań zawierają definicję zmiennych, równania oraz wyrażenia algebraiczne,
- regiony tekstu będące komentarzem w dokumencie,

- regiony wykresów zawierają dwu- i trójwymiarowe wykresy,
- regiony graficzne zawierają rysunki różnych formatów.

Każdy z regionów w dokumencie można swobodnie przesuwać, kopiować lub kasować w celu uzyskania pożądanej postaci dokumentu. Edycję regionu najwygodniej dokonujemy myszką. Naciskając LPM spowodujemy pojawienie się w tym obszarze pionowej kreski, która określa **punkt wstawienia.** Wewnątrz regionu możemy poruszać się za pomocą klawiszy nawigacji [\leftarrow], [\uparrow], [\rightarrow], [\downarrow], [*Home*], [*End*]. Klawisz spacja służy do zmiany zakresu edycji regionu.

Program interpretuje wprowadzane regiony w naturalnym porządku zapisu, tj. z góry na dół. Cecha ta wymusza zdefiniowanie zmiennej użytej w równaniu powyżej regionu z równaniem. W programie we wszystkich niedokończonych definicjach zmiennych, równań czy na wykresach pojawia się **ramka braku** (Rys. 2) w postaci czerwonej ramki wokół regionu zmiennej. Aby zmienna była zdefiniowana, należy poprawnie uzupełnić wszystkie puste pola w regionie.

Rys. 2. Znacznik braku

2. Obliczanie wartości zmiennych

Przy obliczaniu wyrażeń matematycznych wpisujemy w regionie treść interesującego nas wyrażenia. Domyślnym separatorem dziesiętnym w programie SMath Studio jest przecinek. Dokładność i forma wyświetlanych wyników może być modyfikowana w *Menu Narzędzia* \rightarrow *Ustawienia* widoczne na Rys. 3.

Ustawienia	23
Interfejs Obliczenia	
Liczba cyfr po przecinku	3
Próg wykładniczy	5
Wynik (dziedzina)	Automatycznie 🔹
Ułamki	Dziesiętne 💌
Układy równań	Wszystkie wartości 🔹 🔻
Całki: dokładność	100
Pierwiastki (zakres)	-20 🚔 20 🚔
	OK Anuluj

Rys. 3. Modyfikowanie wyświetlania wyników

$$3\sqrt{\frac{2,113\cdot10^{4}}{331+3^{6}}}$$

Rys. 4. Obliczenie wartości pierwiastka

Aby obliczyć w SMath Studio wartość pierwiastka przedstawionego na Rys. 4. należy wykonać następujące czynności:

- 1. Z paska narzędzi Arytmetyka wybrać pierwiastek n-stopnia
- 2. Wprowadzić z klawiatury 2,113*10⁴ a następnie wcisnąć spację do momentu widocznego na Rys. 5.

Rys. 5. Licznik przyszłego ułamka

- 3. Wstawić kreskę ułamkową klawiszem[/]
- 4. Napisać z klawiatury 331+3^6
- 5. LPM wskazać stopień pierwiastka i wpisać 3
- 6. Ostatnim krokiem jest wciśnięcie znaku równości [=]

Przy pomocy skrótów klawiszowych można znacznie przyspieszyć wprowadzanie równań. Poniżej zebrane zostały podstawowe skróty klawiszowe i operatory:

[Ctrl] + [=]	Równe w sensie logicznym	Wprowadzamy [a] następnie [shift]	Wartość bezwzględna
[Ctrl] + [9]	Mniejsze lub równe	[Ctrl] + [Shift] + [P]	Liczba Pi
[Ctrl] + [.]	Symbolicznie równa się	[Ctrl] + [3]	Różne od (lewa strona nie równa prawej)
[Ctrl] + [6]	Indeks górny	[Ctrl] + [0]	Większe lub równe
[.]	Tekstowy indeks dolny	Wpisujemy int	Całka oznaczona
[Ctrl] + [1]	Transponowanie	Wpisujemy sum a następnie [TAB]	Suma wyrażeń
[Ctrl] + [\]	n-ty pierwiastek	[\]	Iloczyn wyrażeń
[Ctrl] + [Z]	nieskończoność	[^]	Do potęgi

Ćwiczenie 2.1: Obliczyć wartości następujących wyrażeń i porównać ich wyniki.

1.	$5\sqrt{\frac{123^{4}+3!}{10\cdot\pi+4^{6}}}$	8,888
2.	$\int_{0}^{2 \cdot \pi} \frac{2 \cdot \mathbf{x} \cdot \sin(\mathbf{x}) }{4 \cdot \pi + \mathbf{x}^{2}} d\mathbf{x}$	0,928
3.	$\ln\left(\sqrt{\frac{76}{23+5}^{4}} + 100\right) = 4,609$	4,609
4.	$\sum_{n=1}^{5} \left(\frac{5 \cdot n + 5^{n}}{(n+1)!} \right)$	26,417

3. Obliczenia symboliczne

W omawianym programie można wykonywać obliczenia symboliczne tj. przekształcenia i obliczenia na wzorach bez podstawiania wartości numerycznych. Można obliczać pochodne oraz różnego typu równania. Żeby otrzymać rozwiązanie, wynik obliczenia należy zastosować symbol $[\rightarrow]$ z belki *Arytmetyka* lub nacisnąć [Ctrl] + [.].

Aby obliczyć pochodną należy postępować wg poniższych punktów:

- 1. Do obliczania pochodnej pierwszego rzędu należy wpisać polecenie *diff*, a następnie zatwierdzić klawiszem [TAB]
 - Do obliczania pochodnej pierwszego rzędu można również wybrać symbol pochodnej z belki *Funkcje*
- 2. Do obliczenia pochodnych wyższych rzędów należy wpisać polecenie *diff* wcisnąć strzałkę w dół wybierając funkcję *diff(3)*, a następnie zatwierdzić wybórw klawiszem [TAB]
- 3. Wpisać funkcję
- 4. Uzupełnić różniczkę
- 5. Wstawić symbol $[\rightarrow]$ z belki *Arytmetyka* lub alternatywnie [Ctrl] + [.]

Przykład obliczeń symbolicznych pochodnej funkcji x³ przedstawiono na Rys. 6.

$$\frac{d^2}{dx^2} \left(x^3\right) = 6 \cdot x$$

Rys. 6. Obliczenie pochodnych

Ćwiczenie 3.1: Obliczyć wartości następujących wyrażeń i porównać wyniki.

Nr	Wyrażenie	Wynik
1.	$\frac{d}{dx} \left(\ln(x) \cdot x^2 \right)$	$\mathbf{x} \cdot (1 + 2 \cdot \ln(\mathbf{x}))$

2.
$$\frac{d^{2}}{dx^{2}} \left(tg(x) + x^{5} \right) = \frac{2 \cdot \left(5 \cdot x^{3} \cdot \cos(x)^{2} \cdot \left(2 \cdot \cos(x) - x \cdot \sin(x) \right) + \sin(x) \cdot \left(1 + 5 \cdot x^{4} \cdot \cos(x)^{2} \right) \right)}{\cos(x)^{3}}$$

3.
$$\frac{d}{dx} \left(x^{5} + 2 \cdot x^{4} \right) = x^{3} \cdot \left(x + 4 \cdot (2 + x) \right)$$

4. Definiowanie zmiennych i funkcji

W SMath Studio w obliczeniach szczególnie wygodne jest stosowanie zmiennych (Rys. 7). Definicja zmiennej polega na przypisaniu konkretnej wartości liczbowej lub innych zmiennych w postaci wyrażenia.

Rys. 7. Definicja zmiennych

W programie są rozróżniane wielkości liter, dlatego też zmienne o nazwach *aaa* oraz *Aaa* dla programu są dwiema różnymi zmiennymi. Bardzo wygodną formą zapisywania zmiennych jest stosowanie indeksów dolnych (Rys. 8). Zapisu indeksu dolnego dokonujemy po zastosowaniu [.] (kropki).

w_{max} = 441

Rys. 8. Nazwa zmiennej z indeksem

Nazwy zmiennych oraz funkcji nie mogą rozpoczynać się cyfrą. W nazwach zmiennych swobodnie można stosować indeksy dolne, natomiast stosowanie indeksów górnych powinno być zarezerwowane dla wykładników potęg lub innych operatorów. Stosowanie greckich liter alfabetu umożliwia pasek o nazwie *Symbole*. Oprócz zmiennych, którym przypisana jest jedna wartość liczbowa można definiować zmienne zakresowe. Zmienna zakresowa definiowana jest jako ciąg arytmetyczny. W definicji zmiennej zakresowej należy podać następujące parametry:

- 1. Wartość początkową ciągu
- Skok wartości zmiennej jeżeli chcemy aby była to wartość inna niż 1 (jeżeli chcemy, aby zmienna zmieniała swoją wartość o 2, to w drugim polu musimy podać wartość o dwa większą od początkowej)
- 3. Wartość końcową

Na Rys. 9 przedstawiono dwa warianty definiowania zmiennej zakresowej. Zmienna definiowana jest za pomocą polecenia **range**. Do wyboru są dwie grupy tej funkcji: **range (2)** – zmienna zakresowa ze skokiem co 1, **range (3)** – zmienna zakresowa, w której wartość skoku możemy zdefiniować.

Rys. 9. Zmienne zakresowe

SMath Studio umożliwia definiowanie funkcji dostępnych w pasku narzędzi, widniejących pod znakiem f(x). Program umożliwia definicje własnych funkcji (Rys. 10), także w tym celu należy:

- 1. Wpisać nazwę funkcji
- 2. Określić argument (gdy funkcja ma więcej argumentów rozdzielamy ją znakiem [;])
- 3. Wpisać znak przypisania [Shift] + [;]
- 4. Wpisać równanie funkcyjne.

$$f_1(x) := ln(x^3 + 3)$$
 $g_1(x; y) := ln(x^2 + y)$

Rys. 10. Definicja funkcji

Aby obliczyć wartość funkcji dla konkretnych wartości argumentów należy powyżej definicji podać wartości tych argumentów. Wartości te podajemy jako zmienne o nazwach argumentów. Można też wstawić bezpośrednio wartości jako argumenty do funkcji (Rys. 11).

$$x \coloneqq 2 \qquad y \coloneqq 3$$

$$g_{1}(x; y) \coloneqq \ln \left(x^{2} + y \right)$$

$$g_{1}(x; y) = 1,946 \qquad g_{1}(5; 4) = 3,367$$

Rys. 11. Wartości funkcji g₁

Wartość funkcji można również wyznaczyć dla zmiennych zakresowych (Rys. 12).

r:=	1.	.10	W(r):=	2·n·r
	(1)			(6,283)
	2			12,566
	3			18,85
r =		w () -	25,133	
			31,416	
	6		W(I)-	37,699
	7			43,982
	8			50,265
	9			56,549
	10,			(62 , 832)

Rys. 12. Wartość funkcji dla zmiennej zakresowej

Ćwiczenie 4.1 Zdefiniować zmienne i obliczyć wartość wyrażenia:

Ćwiczenie 4.2 Zdefiniować zmienne, obliczyć wartości wyrażeń oraz wyświetlić i porównać wyniki:

$$z_{dop} = 1 \dots 6 \qquad \varphi_2 = 11; 22 \dots 66$$

$$\varphi_2 = z_{dop} \qquad \varphi_2 =$$

5. Obliczenia na jednostkach

Program umożliwia nadawanie wartościom niemianowanym sensu fizycznego przez dodanie im standardowych jednostek. Wyniki działań na zmiennych z jednostkami podawany jest przez program w postaci wartości z jednostką. Jednostkę wyniku możemy ustalić dowolnie. Możemy także stosować własne, zdefiniowane wcześniej jednostki.

Do obliczeń warto stosować nazwy zmiennych, które są ogólnie przyjęte przy danym zagadnieniu. Definicja zmiennej M będącej celem obliczeń przedstawiona została na Rys. 13.

Rys. 13. Definicja zmiennych mianowanych, wynik mianowany

Wyświetlenie wyniku obliczeń, czyli wartości obliczonej zmiennej M, został przedstawiony w podstawowej jednostce (dla przyjętego systemu jednostek) – w naszym przypadku są to $[J = D\dot{z}ule]$ – podstawowa dla systemu SI jednostka energii. Czarne pole za literą [J] służy do wprowadzenia innej jednostki – wbudowanej lub zdefiniowanej przez użytkownika. Po wciśnięciu znaku równości obliczenia zostaną przeprowadzone automatycznie. Aby zmienić jednostkę należy kliknąć w czarnym polu i z klawiatury wpisać *N*, zatwierdzić klawiszem [TAB] następnie wprowadzić [*], wybrać z klawiatury *m* a następnie zatwierdzić klawiszem [TAB]. Ostatnim krokiem jest zatwierdzenie całości przyciskiem [ENTER] (Rys. 14). Dla nazw jednostek można stosować przedrostki jako mnożniki zmniejszające (litery: *d*, *c*, *i* i inne) lub zwiększające (litery: *h*, *k*, *M* i inne). Na Rys. 15 przedstawiono przykład zastosowania przedrostka zwiększającego *k* równego 1000.

$$M = 10000 N m$$

Rys. 14. *Wynik ze zmienioną jednostką*

$$M = 10 \ kN \ m$$

Rys. 15. Wynik z jednostką poprzedzoną przedrostkiem

Jeżeli użytkownikowi nie jest znana jednostka wbudowana, to może on posłużyć się poleceniem Wstaw→Jednostki. Doskonałym przykładem może być jednostka czasu: **[godzina]**, którą w programie SMath Studio zapisuje się jako **[hr]** (Rys. 16).

Wymiar:	Jednos	tka:	
Wszystkie	Dzień	('day)	
Aktywność katalityczna	Godzir	1a ('hr)	
Ciśnienie	Kilosel	kunda ('ks)	
Czas	Mikros	ekunda ('µs)	Ξ
Częstotliwość	Milisek	tunda ('ms)	
Długość	Minuta	a ('min)	
Doza	Nanos	ekunda ('ns)	
Energia	Pikose	ekunda ('ps)	
Indukcja magnetyczna	Rok ()	yr)	
Indukcyjność Informacja Kat	- Szybkie	e wyszukiwanie:	

Rys. 16.Okno służące do wyboru wbudowanych jednostek

Przy korzystaniu z jednostek należy pamiętać o stosowaniu jednostek zmiennych we wzorach, zwłaszcza przy operacjach addytywnych. Program w przypadku niezgodności informuje nas o błędzie przy próbie wyświetlenia wartości zmiennej (Rys. 17).

Rys. 17. Niezgodność jednostek sygnalizowana przez program

Przy wprowadzaniu argumentów funkcji trygonometrycznych program interpretuje wpisane przez nas wartości liczbowe jako podane w mierze radialnej. Wartości dla miar stopniowych uzyskujemy podając miarę kąta z jednostką stopnie (z ang. *deg*), (Rys. 18).

Rys. 18. Jednostki w funkcjach trygonometrycznych

ĆWICZENIE 5.1: Zdefiniować własną jednostkę jak na przykład [MPa].

ĆWICZENIE 5.2: Przeliczyć prędkość auta wynoszącą 90km/h na jednostki używane w USA czyli mila/h – zastosować wbudowane jednostki.

ĆWICZENIE 5.3: Obliczyć moment zginający w środku rozpiętości belki wolno podpartej obciążonej ciężarem własnym z wykorzystaniem jednostek.

ĆWICZENIE 5.4: Obliczyć energię potencjalną ciała sztywnego o konkretnej masie na znanej wysokości.

ĆWICZENIE 5.5: Obliczyć siłę wyporu na ciało zanurzone w cieczy.

6. Wstawianie i formatowanie wykresów

Oprócz obliczeń numerycznych i symbolicznych program umożliwia użytkownikowi graficzną prezentację wyników w postaci wykresów. W programie można wykorzystać dwa rodzaje wykresów – 2D i 3D. Przed uruchomieniem kreatora wykresów poleceniem z paska narzędzi, (*Wstaw* \rightarrow *Wykres*) należy zdefiniować funkcje, której wykres chcemy obejrzeć. Dobrze jest też zdefiniować zakres argumentów funkcji chociaż nie jest to konieczne. Po wstawieniu obszaru wykresu należy w aktywnym polu wpisać nazwę funkcji (Rys. 19).

Rys. 19. Tworzenie wykresu funkcji

W przypadku programu SMath Studio zmiana zakresu osi jest możliwa za pomocą klawisza [Ctrl] lub [Shift] z pomocą [scroll'a].

Na jednym wykresie można przedstawić przebieg kilku różnych funkcji w tym samym zakresie odciętych (Rys. 20). W takim przypadku w aktywnym polu należy z belki *Funkcje* wybrać ikonę (1), a następnie w puste pola wpisać nazwy wcześniej zdefiniowanych funkcji.

Rys. 20. Wykres dwóch funkcji

Ćwiczenie 6.1: Narysować wykres funkcji F(x) i jej pochodnej oraz sformatować jego wygląd tak, tak jak pokazano to na Rys. 20.

7. Obliczenia na macierzach

Wprowadzanie wektorów i macierzy można wykonać z menu *Wstaw* \rightarrow *Macierz,* kombinacją klawiszy [Ctrl] + [M] albo wybrać ikonę z belki *Macierze.* Po wykonaniu jednej z powyższych opcji należy określić rozmiar macierzy (domyślnie 3x3) a następnie wprowadzić elementy macierzy (Rys. 21).

$$\mathbf{K} \coloneqq \begin{pmatrix} 5 & 20 - 30 \\ 120 & 15 & 30 \\ 1 & 3 & 4 \end{pmatrix} \qquad \mathbf{L} \coloneqq \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

Rys. 21. Przykłady macierzy

Wartości poszczególnych elementów macierzy możemy uzyskać wykorzystując indeksacje elementów macierzy Rys. 22. Indeks macierzowy wprowadza się przy pomocy funkcji el(2), el(3). W pierwszej funkcji, w pierwszym polu wprowadzamy nazwę macierzy natomiast w drugim nr elementu, który chcemy wywołać (numeracja elementów rozpoczyna się od lewego górnego rogu i rośnie aż do prawego dolnego rogu – od lewej do prawej, od góry do dołu). Funkcja el(2) umożliwia wyświetlenie żądanego elementu przez wprowadzenie nr wiersza i kolumny, w których znajduje się dany argument.

$\mathbf{K} \coloneqq \begin{pmatrix} 5 & 20 - 30 \\ 120 & 15 & 30 \\ 1 & 3 & 4 \end{pmatrix}$	$\mathbf{L} \coloneqq \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 9 & 4 & 10 \end{pmatrix}$
K 1 = 5	L ₇ = 4
к ₅ =15	L ₈ = 10
K _{1 2} = 20	L _{2 1} = 5
$K_{22} = 15$	$L_{2,2} = 9$

Rys. 22. Elementy macierzy

Program umożliwia wykonywanie działań na macierzach, oczywiście zgodnych z zasadami rachunku macierzowego. Oprócz podstawowych działań dostępnych w pasku *Macierze* można wykorzystać kilka dodatkowych funkcji:

- col(K;n) wyświetli n tą kolumnę macierzy K,
- cols(K) zwraca liczbę kolumn macierzy/wektora,
- identity(n) zwraca macierz jednostkową (n x n jedynki na przekątnej, zera poza),
- length(K) zwraca liczbę elementów w macierzy, zwraca skalar,
- matrix(x;y) zwraca zerową macierz o podanym rozmiarze x liczba wierszy, y liczba kolumn,
- minor(K;i;j) zwraca dopełnienie elementu [i;j] macierzy,
- rank(K) zwraca rząd macierzy,
- rows(K) zwraca liczbę wierszy macierzy,
- submatrix(K;i;j;k;n) zwraca macierz K od i-tego do j-tego wiersza i od k-tej do n-tej kolumny,
- minor(K;i;j) zwraca podmacierz danej macierzy, powstałą z usunięcia podanego wiersza i podanej kolumny.

Ćwiczenie 7.1: Zdefiniuj macierze i wykonaj na nich działania.

$$A := \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{pmatrix} \quad B := \begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \end{pmatrix}$$
$$A^{-1}, A^{T}, A^{-1} \cdot A, A^{-1} \cdot B, A \cdot B$$

8. Rozwiązywanie równań i układów równań

SMath Studio umożliwia między innymi rozwiązywanie równań oraz układów równań.

Równania wielomianowe

Funkcja *polyroots*() poszukuje pierwiastków, tj. miejsc zerowych wielomianu zdefiniowanego w następujący sposób:

 $\mathbf{c}_0 \cdot \mathbf{x}^0 + \mathbf{c}_1 \cdot \mathbf{x}^1 + \mathbf{c}_2 \cdot \mathbf{x}^2 + \ldots + \mathbf{c}_n \cdot \mathbf{x}^n.$

Jako argument funkcji musimy podać wektor ze współczynnikami c_i wielomianu (Rys. 23).

$$V \coloneqq \begin{bmatrix} 5\\-4\\-3\\2 \end{bmatrix}$$
polyroots
$$\begin{pmatrix} 5\\-4\\-3\\2 \end{pmatrix} = \begin{pmatrix} 1\\-1,351\\1,851 \end{pmatrix}$$
polyroots $(V) = \begin{pmatrix} 1\\-1,351\\1,851 \end{pmatrix}$

Rys. 23. Pierwiastki wielomianu

Ćwiczenie 8.1 Znajdź pierwiastki wielomianów:

$$2 \cdot x^{4} + 2 \cdot x^{3} + 20 \cdot x^{2} + 53 \cdot x - 60$$
 $5 \cdot d^{6} + 5 \cdot d^{5} + 4 \cdot d^{4} + 3 \cdot d^{3} + 2 \cdot d^{2} + d + 1$

Miejsca zerowe dowolnej funkcji

Polecenie *solve()* pozwala w sposób numeryczny znaleźć pierwiastki rzeczywiste zadanej funkcji (Rys. 24). W ten sposób można wyznaczyć miejsca zerowe dowolnej funkcji, w odróżnieniu od polecenia *polyroots()* rozwiązującego tylko równanie wielomianowe.

Argumentami polecenia *solve(2)* są nazwa funkcji i nazwa zmiennej, dla których nastąpi poszukiwanie rozwiązania. W bardziej rozbudowanej wersji *solve(4)* są cztery argumenty, dodatkowo początek i koniec zakresu poszukiwania rozwiązania.

Często, dobrze jest wygenerować dodatkowo wykres analizowanej funkcji, w celu określenia liczby miejsc zerowych w danym zakresie.

Rys. 24. Zastosowanie funkcji solve()

Ćwiczenie 8.2: Znajdź wszystkie miejsca zerowe funkcji:

$$z(x) \coloneqq x^{3} - e^{x} + 200$$

f(x) = -x^{4} + 20 \cdot x^{3} + 300 \cdot x^{2} + 20 \cdot x + 15

Rozwiązanie układu równań liniowych

Do rozwiązania układów równań liniowych należy stosować metodę macierzową. Wymaga to zdefiniowania macierzy współczynników przy niewiadomych oraz wektora (macierzy jednokolumnowej) wyrazów wolnych, a następnie wykonania operacji na tych macierzach.

Na Rys. 25 przedstawiono układ równań linowych zapisany z użyciem operatora logicznego = (CTRL+=). Dodatkowo, zastosowanie polecenia *sys()* umożliwia zapisanie równań spiętych klamrą, co przedstawia Rys. 26.

Rys. 25: Układ równań liniowych

Rys. 26: Układ równań liniowych zapisany poprzez polecenie sys()

Zapisanie układu równań nie jest konieczne z punktu widzenia działania programu i dalszych czynności mających doprowadzić do ustalenia wartości niewiadomych. Oznacza to, że niezależnie od tego w jakiej formie zostanie zapisany (lub nie zapisany) układ równań liniowych konieczne jest zdefiniowanie odpowiednich macierzy. W przykładzie z Rys. 27 zdefiniowano zmienną **WN** jako macierz współczynników przy niewiadomych oraz zmienną **WW** jako wektor (macierz jednokolumnową) wyrazów wolnych.

Rys. 27: Macierze definiujące układ równań liniowych

Rozwiązanie, zmienna **R**, uzyskuje się obliczając macierz odwrotną do macierzy współczynników i mnożąc ją przez wektor wyrazów wolnych, co pokazuje Rys. 28.

Rys. 28: Rozwiązanie układu równań liniowych

Macierz odwrotną można również obliczyć używając polecenia invert(), patrz Rys. 29.

1 (0,1	25 - 0,125 0,75
$WN^{-1} = -0, C$	625 0,5625 - 1,375
	875 0,6875 - 1,125
	(0,125 -0,125 0,75)
invert(WN)=	-0,0625 0,5625 -1,375
	(-0,1875 0,6875 -1,125)

Rys. 29: Sposoby obliczania macierzy odwrotnej

Niekiedy zachodzi konieczność użycia w dalszych obliczeniach wartości wyznaczonych niewiadomych. Można na podstawie uzyskanego rozwiązania przechowywanego w zmiennej **R** zdefiniować zmienne **x**, **y** i **z** poprzez użycie polecenia el(2). Kolejne etapy takiego definiowania pokazano na Rys. 30.

Rys. 30: Deklaracja zmiennych na podstawie rozwiązania R

Ćwiczenie 8.3: Rozwiąż układy równań liniowych:

$$\begin{cases} 12x+20y-5z=37\\ -5x-y+20z=53\\ 3x+7y-2z=11 \end{cases}$$
$$\begin{cases} 5N_1+6N_2-2N_3=65\\ 6N_1+N_2=36\\ -2N_1+8N_2+3N_3=32 \end{cases}$$
$$\begin{cases} a+b-4c-20=0\\ 16a+10b-36z=0\\ 6a+b+c=0 \end{cases}$$

Rozwiązanie równań nieliniowych i układów równań nieliniowych

Rozwiązywanie układów równań nieliniowych jest możliwe poprzez użycie wielu procedur numerycznych. W przykładach dostępnych we wbudowanej pomocy programu SMath Studio zawarto trzy z takich metod – patrz Rys. 31. W bardzo łatwy sposób można zaadaptować do swoich potrzeb te przykłady poprzez zmianę definicji funkcji f(x).

Realizacja odpowiednich procedur numerycznych wymaga użycie funkcji programistycznych wbudowanych do programu SMath Studio.

Rys. 31: Przykładowe metody rozwiązywania układów równań nieliniowych

9. Programowanie

Instrukcja warunkowa if

Niektóre funkcje określone są w sposób przedziałowy, tj. w zależności od tego w jakim zakresie znajduje się ich argument (Rys. 32). Wartości takiej funkcji można obliczyć wykorzystując instrukcję warunkową "*jeżeli"* (polecenie *if*).

Budowa i działanie instrukcji warunkowej jest analogiczne jak w arkuszu kalkulacyjnym.

Na Rys. 33 przedstawiono definicję funkcji F(x) za pomocą polecenia *if* w programie SMath Studio.

$$F(x) := \begin{cases} x+1 & x<3\\ 2\\ x & x \ge 3 \end{cases}$$

Rys. 32. Przykład funkcji o zmiennej postaci

Rys. 33. Zastosowanie polecenia if do definicji funkcji

Przykład 9a

Na Rys. 34 przedstawiono schemat działania polecenia *if* – jeżeli argument funkcji F(x) jest mniejszy od 3 to wartości funkcji obliczane będą zgodnie z formułą x+1, jeżeli argument funkcji będzie większy bądź równy 3 to funkcja przyjmować będzie wartości x².

Rys. 34. Zastosowanie funkcji "if" wraz z wykresem wartości funkcji F(x)

Przykład 9b

W przypadku wielu przedziałów zmienności funkcji definicję funkcji można zrealizować poprzez użycie polecenia warunkowego *if* jako argumentu innego polecenia warunkowego *if*. Przykład realizacji dla funkcji trzy-przedziałowej G(x) przedstawia Rys. 35.

Rys. 35. *Funkcja if wewnątrz funkcji if wraz z wykresem wartości funkcji* G(x)

Pętla iteracyjna for

Użycie pętli iteracyjnej *for* (**określanej również mianem pętli zakresowej lub pętli licznikowej**) pozwala na wykonanie tych samych operacji ustaloną liczbę razy. Do działania pętli licznikowej *for* konieczna jest zmienna sterująca określająca ile razy polecenia ujęte w pętli zostaną wykonane.

Na przykładzie widocznym na Rys. 36 zmienna sterująca to zmienna i. Zmienna sterująca i została zdefiniowana jako zmienną zakresową $1 \dots n$, gdzie zmienna n określa liczebność zbioru argumentów przechowywanych w zmiennej x. Wyznaczenie liczby elementów danej zmiennej jest możliwe dzięki użyciu polecenia *length()*.

W omawianym przykładzie zmienna x mieści się w zakresie <10, 20>, w który wchodzi 11 elementów, stąd n = 11. Po wprowadzeniu polecenia *for* musimy podać zakres, w którym przeprowadzamy obliczenia, w naszym przypadku $i \in 1 ... n$. Oznacza to iż pętla obliczy wartości funkcji y dla argumentów od x_1 do x_n . Jak widzimy $x_1 = 10$, $x_2 = 11$, itd. Gdy i = 5 to pętla obliczy wartość funkcji y dla piątego elementu z zakresu zdefiniowanych argumentów x.

Rys. 36. Zastosowanie pętli "for"

Przykład 9c

```
x = 1 \dots 10
                                  z := 1 \dots 10
                                  for j \in 1 \ldots \text{length}(z)
n := length(x)
                                     q_j := if_z_j \le 5
for i \in 1 \ldots n
   y_{i1} := if x_i \le 5
                                                <sup>z</sup> j
                × i
                                             else
                                                z <sub>j</sub>+100
             else
                x <sub>i</sub>+100
      1
                                         1
                                         2
      2
                                         3
       3
       4
                                         4
                                         5
      5
у =
                                  q=
                                       106
     106
                                       107
     107
     108
                                       108
     109
                                       109
     110
                                       110
```

Przykład 9d

Samochód jedzie z prędkością 300km/h i nagle zaczyna hamować z przyspieszeniem równym 5m/s². Prędkość samochodu mierzono od chwili rozpoczęcia hamowania co 4s przez 28s. Podaj prędkość samochodu w 0s, 4s, 8s, 12s i 16s hamowania, kiedy prędkość zacznie przyjmować wartość ujemną przy pomocy odpowiedniej funkcji wstaw wartość 0.

Przykład 9e

Wyznacz zmienność (oblicz wartości funkcji i następnie narysuj wykresy) momentu zginającego i siły poprzecznej w belce obciążonej jak na Rys. 37.

Wartości reakcji obliczamy wg następujących wzorów:

$$V_{B} = -V_{A} + q \cdot \frac{L}{2} + P \qquad V_{A} = \frac{q \cdot \frac{L}{2} \cdot \frac{3}{4} \cdot L + P \cdot \frac{L}{4}}{L}$$

Funkcja momentu zginającego dla rozważanej belki jest następującą funkcją przedziałową:

$$M_{y}(x) = \begin{cases} 0 \leqslant x \leqslant \frac{L}{2} & V_{A} \cdot x - \frac{q \cdot x^{2}}{2} \\ \frac{L}{2} \leqslant x \leqslant \frac{3L}{4} & V_{A} \cdot x - \frac{q \cdot L}{2} \cdot \left(x - \frac{L}{4}\right) \\ \frac{3L}{4} \leqslant x \leqslant L & V_{A} \cdot x - \frac{q \cdot L}{2} \cdot \left(x - \frac{L}{4}\right) - P \cdot \left(x - \frac{3L}{4}\right) \end{cases}$$

stąd zachodzi konieczność zdefiniowania zmiennej x jako zmiennej zakresowej $\langle 0 L \rangle$ oraz konieczność zastosowania wielopoziomowej funkcji *if* jako argumentu pętli licznikowej *for*.

Przy definiowaniu zmiennej zakresowej poleceniem range(2) przypisane zmiennej L jednostki sprawiają kłopot – zmienna zakresowa x "nie dziedziczy" jednostek po zmiennej L. Na Rys. 38a) pokazano dwa nieudane warianty definicji zmiennej x. Z kolei na Rys. 38b) pokazano dwa prawidłowe warianty definicji zmiennej x. Użycie polecenia range(3) umożliwia wygenerowanie zmiennej x z dowolnym przyrostem – w drugim przykładzie z Rys. 38b) zastosowano przyrost jednostkowy by uzyskać ten sam efekt co w trzech poprzednich przykładach.

Rys. 38: Nieprawidłowe a) i prawidłowe b) sposoby definiowania zmiennej zakresowej z jednostką

ZASADNICZE OBL	CZENIA
$\mathbf{x} \coloneqq \left(0 \cdot . \cdot \frac{\mathbf{L}}{m} \right) \mathbf{m}$	Określenie zbioru punktów, dla których obliczone zostaną wartości funkcji M_y i Q_z
n:=length(x) n=21	Ustalenie liczebności zbioru argumentów
Obliczenia wa	rtości zmiennej M_y w trzech przedziałach zmienności zmiennej x
for $k \in 1 \dots n$ $M_{y_{k}} = if x$ V_{A}	$k \leq \frac{1}{2} \cdot L$ $x_{k} = \frac{q \cdot \left(x_{k}\right)^{2}}{2}$
else if	$ \begin{array}{c} x \\ k > \frac{1}{2} \cdot L \\ x \\ k \le \frac{3}{4} \cdot L \end{array} $
v els	$ \begin{array}{c} \mathbf{A} \cdot \mathbf{x} \\ \mathbf{A} \cdot \mathbf{x} \\ \mathbf{k} - \mathbf{q} \cdot \frac{\mathbf{L}}{2} \cdot \left(\mathbf{x} \\ \mathbf{k} - \frac{\mathbf{L}}{4} \right) \\ \text{se} \\ \mathbf{f} \\ \mathbf{x} \\ \mathbf{k} > \frac{3}{4} \cdot \mathbf{L} \\ \mathbf{x} \\ \mathbf{k} \leq \mathbf{L} \end{array} $
e	$V_{A} \cdot x_{k} - q \cdot \frac{L}{2} \cdot \left(x_{k} - \frac{L}{4} \right) - P \cdot \left(x_{k} - \frac{3}{4} \cdot L \right)$ lse error("Błąd danych")

WYNIKI:	
(0)	(0)
1 m	15
2 m	28
3 m	39
4 m	48
5 m	55
6 m	60
7 m	63
8 m	64
9 m	63
x = 10 m M_	60 kN m
11 m ¹	56
12 m	52
13 m	48
14 m	44
15 m	40
16 m	32
17 m	24
18 m	16
19 m	8
(20 m)	

ZADANIE KONTROLNE: zrobić obliczenia i narysować wykres Q_z(x)

Funkcja siły poprzecznej jest następującą funkcją przedziałową:

$$Q_{z}(x) = \begin{cases} 0 \leqslant x \leqslant \frac{L}{2} & V_{A} - q \cdot x \\ \frac{L}{2} \leqslant x \leqslant \frac{3L}{4} & V_{A} - q \cdot \frac{L}{2} \\ \frac{3L}{4} \leqslant x \leqslant L & V_{A} - q \cdot \frac{L}{2} - P \end{cases}$$

Wykres zmienności funkcji siły poprzecznej dla rozważanej belki przedstawia się następująco:

Pętla warunkowa while

Użycie pętli warunkowej *while* (określanej również mianem pętli repetycyjnej) pozwala na wykonanie tych dopóki określony warunek jest spełniony. Warunek zawarty w definiowanej pętli *while* musi być wyrażeniem logicznym zwracającym albo wartość 1 utożsamianą z prawdą albo wartość 0 jako fałsz. Wartość wyrażenia logicznego jest ustalona na początku pętli. Jeśli wyrażenie logiczne przyjmuje wartość 1, to instrukcje zawarte w pętli wykonywane są po raz kolejny.

Przykładem dobrze ilustrującym działanie pętli warunkowej *while* jest obliczanie wartości silni liczby naturalnej **n** (**n**!).

Źródło: <u>https://pl.wikipedia.org/wiki/Silnia</u> • Silnia liczby naturalnej *n* – iloczyn wszystkich liczb naturalnych nie większych niż *n* • Oznaczenie *n*! dla silni wprowadził w 1808 roku Christian Kramp. • Zapis *n*!, 2! itd. odczytujemy "n silnia", "dwa silnia" itd. **Definicja rekurencyjna silni ma postać:** $n! = \begin{cases} 1 & \text{dla } n = 0 \\ n \cdot (n - 1)! & \text{dla } n \ge 1 \end{cases}$

Przykłady:

 $\begin{array}{l} 4! = 1 \cdot 2 \cdot 3 \cdot 4 = 24 \\ 5! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120 \\ 6! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 = 720 \end{array}$

Schemat blokowy przedstawiający algorytm obliczania **n silnia** przedstawiono na Rys. 39. Ten i wiele innych algorytmów można znaleźć na stronie: <u>http://www.algorytm.org/algorytmy-arytmetyczne/silnia.html</u>.

Rys. 39: Schemat blokowy algorytmu obliczania n!

Realizację algorytmu przedstawionego na Rys. 39 w programie SMath Studio przedstawia Rys. 40.

Rys. 40: *Obliczanie wartości* **n** silnia z wykorzystaniem pętli while

Oczywiście program SMath Studio posiada wbudowany operator ! (wykrzyknik) umożliwiający obliczanie **n silnia**, co widać na Rys. 41.

Rys. 41: Obliczanie wartości n silnia poprzez wykorzystanie operatora !

Przykład 9f

Pętli *while* ma zastosowanie w wielu algorytmach rozwiązania równania nieliniowego. Realizację jednego algorytmu nazywanego **metodą siecznych** (również **metodą Newtona-Raphsona**) przedstawiono na Rys. 42. Jest to jeden z wielu przykładów dostępnych w programie SMath Studio: menu **Pomoc** \rightarrow **Przykłady.**

Rys. 42: Przykład zastosowania pętli while do rozwiązywania równania nieliniowego

Obliczenia w pętli *while* są powtarzane dopóty dopóki obliczana wartość bezwzględna funkcji f(xn) dla iterowanego argumentu xn jest większa od założonego błędu – od wartości zmiennej ε . W przypadku idealnym rozwiązaniem jest takie xn, dla którego f(xn) równa się dokładnie zero.

Widać, że dla zdefiniowanej funkcji $\mathbf{f}(\mathbf{x})$ i założonego przedziału wyszukiwania potrzeba było 109 iteracji, aby osiągnąć założony poziom dokładności, tj. $|\mathbf{f}(\mathbf{xn})=-9,0375\cdot10^{-6}|\leq\epsilon=10^{-5}$, co oznaczało zakończenie działania pętli warunkowej *while*.

ZADANIE KONTROLNE: sprawdzić ile iteracji potrzeba dla uzyskania rozwiązania zakładając przedział wyszukiwania na $\langle 0 \rangle$. Dodatkowo, sprawdzić co da zmiana wymaganej dokładności na 10^{-3} .