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Introduction

Computer simulation

Computer simulation is the reproduction of the behaviour of a system using

a computer to simulate the outcomes of a mathematical model associated with
said system. Computer simulations have become a useful tool for the
mathematical modelling of many natural systems in physics, astrophysics,
climatology, chemistry, biology, engineering, etc.

Computer simulations are realized by running computer programs implemented
computational methods. Programs can be either small, running on small
devices, or large-scale programs that run for hours or days on network-based
groups of computers (cluster computers).

The scale of events being simulated by computer simulations has far exceeded
anything possible using traditional paper-and-pencil mathematical modelling.
Simulation can be used to explore and to estimate the performance of systems too
complex for analytical solutions.
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Introduction

Computer programs enable simulation of kinematics or dynamics of the system,
analysis of heat flow and mass flow, stresses and other characteristics of the
designed product. This allows for a significant acceleration of the design process
and - above all - for reduction of design costs.

Examples of software packages that implement the finite element method:
Abaqus, ADINA, NX, FEMAP, CalculiX, LS-DYNA.
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Introduction

Analysis process
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In most cases, the mathematical model of a real problem is derived from the
physical phenomenon. The physical model is the set of assumptions with some

simplifications made to the real problem. The simplifications on the physical

assumptions lead to the less appropriate mathematical model, but at the same

time the one that is simpler to solve exactly.
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Introduction

Mostly, a mathematical modeln is expressed by the algebraic equation or
differential equation (set of equations) completed with boundary conditions that
need to be solved.

The subject of computer simulation is concerned with devising computational
methods for solution or mostly approximating the solution to mathematically
expressed problem.

Computational method consists of a sequence of algebraic and logical operation
that produces the approximation to the mathematical problem thus the method
can be employed on digital computers.
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Introduction

Solutions of a mathematical model equations are functions or values of these
functions. In case of computational methods values of functions are computed for
fixed values of parameters and fixed values of independent variables.

Mathematical model formulated as set of differential equations correspond to the
so-called local formulation.

Mathematical model formulated as functionals associated with the whole structure
are used in the global formulation. In such a case function of kinetic energy and
potential energy are often used as well as their combination.
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Introduction

The computational methods for solution of systems most often deal with initial or
boundary value problems.

@ Methods for solving initial value problems (IVP):

@ Euler methods.
@ Runge-Kutta type of methods.

@ Methods for solving boundary value problems (BVP):

@ Finite difference method.
@ Boundary element method.
@ Finite element method.
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Finite Elements Method Basics

The finite element method (FEM), is a method for solving problems of
engineering and mathematical physics, formulated as differential equation or
functional.

The method approximates the unknown function over the domain. To solve the
problem, it subdivides a large system into smaller, simpler parts that are called
finite elements. The simple equations that model these finite elements are then
assembled into a larger system of equations that models the entire problem. FEM
uses variational methods from the calculus of variations to approximate a solution
by minimizing an associated error function.

What is FEM for an engineer?

FEM is a numerical method that allows finding approximate and discrete
functions to solve the boundary problem. In the case of the linear theory of
elasticity (solid state mechanics), displacements are the solution of the problem,
so we can also determine strains and stresses. The main advantage of the method
is the ability to obtain results for complex structures, which it is not possible to
perform analytical calculations.
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Finite Elements Method Basics

Spring

The model of simplest finite element is spring with stiffness k.
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Basic finite element properties:
@ nodes: i, j (local, related with finite element),
@ stiffness: k¢,
@ nodal displacements: uf, uf (local),
@ nodal forces: Ff, £ (local).
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Finite Elements Method Basics

The relation of force and displacement has the form

Fe=k*- A,

Auv® = uf — uf,
using the equilibrium condition, we can write
Ff+F =0=F =—-F =F"
Consider the equilibrium of forces for the spring. At nodes we have

P =

Fje:Fe:ke(uf—u?):—ke-u,-e~|—ke-uf.

Ff=—F®= Kk (uf —uf) = k- uf — k°- uf,

In the matrix form

ke —ke || ws | | Fr
—ke ke || w Fe |’
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Finite Elements Method Basics

or
Keue — Fe7
where:
@ K© — finite element stiffness matrix,
@ u® — element nodal displacement vector,

@ F¢ — element nodal force vector,

ke —k¢
— ke ke

Ke

e
e uj
e

c
Il

uj
Fe = Fle

Fe
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Finite Elements Method Basics

Ke =

ke —ke
—ke ke :

Notes:
o stiffness matrix K¢ is symmetric K® = (K®)T,
@ stiffness matrix is singular, determinant is equal to zero

K| = K K — (—kO)(—k) = (K — (k) = 0.
Can we solve that equations?

All you have to do is provide only one boundary condition for the displacement ¢,
to solve the equations.

e

F
For uf = 0 (restrained end of the beam), to uf = T

PhD MSc Eng. Stawomir Koczubiej Fundamentals of Finite Elements Method 14/116



Finite Elements Method Basics

Spring System
Derivation of equilibrium equations for the spring system.

© H ® [ &

ul—>{—) F, u2—>{—) F, u3—>{—) F,
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Equilibrium equations for each elements (local)
e o N
kK d | R
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N A
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Finite Elements Method Basics

Global displacements are

1
U]_ = U17

1 2
Up = Uy, = uy,
U3:u§.

Consider the equilibrium of forces ant each nodes

Fi=F{,
F>=Fy + F,
Fs=F3,

that is
= klul - kluz,
F —k1U1+k1U2+k2U2—k2U3,
F = —k2U2 + k2U3.
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Finite Elements Method Basics

After transformation

F1 = k1u1 - k1U2,

Fo = —k'uy + (k' + K7) up — K us,
F = —k2U2 + k2U3.
In matrix form
k! —kt 0 = u% F = F11
—k' okl k? —k? uzzu%:u1 = F2£F21—|—F12 ,
0 —K’ k2 w3 = U3 F=F;
or
Ku =F,
where:

@ K — global stiffness matrix (structure matrix),
@ u — global displacement vector,

o F - global force vector.
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Finite Elements Method Basics

An alternative way, ,enlarging” the stiffness matrices for element 1

Kkt — k!

0 u
—k! k' 0 uo
0 0 0 u3

(3
klup — klu, 4+ 0-
—klul + k1U2 +0
O-t14+0-wp+0-

and for element 2

0 0 0 u
0 k2 —k2 u»
0 —k2 k2 us
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Finite Elements Method Basics

Adding the two matrix equations (superposition), we have

K~k 0 0 0 0 U Fl 0
S B I w | =| B |+
0 00 0 —Kk2 K2 s 0 F2

this is the same equations we derived by using the force equilibrium concept.

Above operation assembly local (for single finite element) equilibrium equations
to one global (for all finite elements) system of equilibrium equations is called
aggregation.
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Finite Elements Method Basics

Notice, that the way of numbering nodes affects the form of the equilibrium
equations.

@kl@kz@

X
”5"#')F3 ”f_'F_’Fl ”i"*”P;
k0 —kt k> —k> 0
K! = 00 0], Ki=| k2 k2 0],
—kt 0 k! 0 0 0
k1+k2 —k2 —kt us F3
—k2 k2 0 u = F1
—kl 0 kl u» F2
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Finite Elements Method Basics

Spring system with boundary and load condition.

K @ 2 @3

T —

| | X
ur’HFI UZ_VHFZ u3—>!—)F3

4Enlarge” equilibrium equations in matrix form has form

s N A N
K ko | w|=| R,
0 0 0 || u 0
(o 0o o|[w ]| [o ]
0 K —K||w|=|F
0 -k k|| u F2
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Finite Elements Method Basics

After aggregation, assuming u; =0 and F; = F, = T we have

Kt —K! 0 mn =0 F
—k' K4 k2 —k? Uo =| =T |,
0 —k? k2 u3 =T

(i
k'O —kluy +0-us=F
—kY 04 (K + K)o — KPuz =T .
0-0—Kup +Kus =T

_/_
T )

which reduces to (only primary variables)

Ktk =k || w |
—k2 k2 us
0

(kl + kz)UQ — k2U3 =T
—k2U2 + k2U3 =T ’
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Finite Elements Method Basics

After some algebra we have

kKlup =2T
—k2U2 + k2U3 =T
and
—k1U2 = F1.
Solving the equations, we obtain the displacement and the reaction force

2T 2T T

Uzzﬁ, U3—F+p, F1:—2T
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Finite Elements Method Basics

Self study example - system of three springs.

@ spring stiffness:
® £ & ke k' =100 N/mm,
— k? = 200 N/mm,

| | X 3
” k®=1 N
u1_>! >F, uz_'! >F, us_': >F, u4_': >F, f 7(_)0 E/;(;(n)qu
@ Torce = .

1 g

Elements stiffness matrices

K1 _ | 100 —100 K2 _ | 200 —200 Ks_ | 100 —100
—100 100 |’ —200 200 |’ —100 100 |’

global stiffness matrix

100 —100 0 0

K — —100 100+ 200 —200 0
0 —200 200 +100 —100

0 0 —100 100
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Finite Elements Method Basics

Global equilibrium equations

100 —100 0 0 h=0 F
—~100 300 —200 0 U | R=o0
0 —200 300 —100 us | £, =500
0 0 —100 100 =0 Fa

Equations for determine primary variables

300 —200 w | |0
—200 300 | | us 500 |’
and secondary variables

—100U2 = F1
—100us = F4
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Finite Elements Method Basics

Solving the equations, we obtain the displacements and forces

us = 3 mm, F1 = —200N F4 = —300 N.

up =2 mm,
, F=-200N F=500N F,=-300 N
—>
X

4

uw,=2mm-— =3 mm-—

Sum of loads and reactions is equal to zero
T+ F+ F, =0=-500—200— 300 =0.

The FE equations for the spring 2 is

K2u2 — F2
k2 —k? U = uf B F12
—k? k2 uz = u% B F22 ’

We can calculate the spring forces as
200 —200 2| | R N F? | | —200
—200 200 || 3 F2 F2 200 |
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Finite Elements Method Basics

Self study example - find the global stiffness matrix for the arbitrarily numbered
nodes and elements.

First we construct the element connectivity table which specifies the global
node numbers corresponding to the local node numbers for each element.

Element | Node i =1 Node =2
1 4 2
2 2 3
3 3 5
4 2 1
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Finite Elements Method Basics

Element | Node i=1 Node =2
1 2

N W N B

2 3
3 5
4 1

Then we can write the element stiffness matrices as follows

4 2 2 3
S B S | , 2 [ Kk k2]
K = 5 K* = )
2 —kt k' 2 3 —k? k? 2
1 2 1 2
3 5 2 1
wo 3 e o 2 [ oK -
5 —k3 k3 2 1 —k* k* 2
1 2 1 2
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Finite Elements Method Basics

4 2
Kl_ kl _kl
T2 —kt K
1 2
3 5
oo 3 K —k3
T 5 —k3 K3
1 2

2 )

1

)

2

K> =

K* =

;|
!

2

k2

iy

1

2

k4

s

1

3
—K? 1
k2 2’
2
1
—k* 1
k* 2
2

Finally, applying the superposition method, we obtain the global stiffness matrix
as follows (the matrix is symmetric, banded and singular)

1

ka
—ky
0

X
I
(& I NSV N
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—ka
ki + ko + ka
—ky
—k
0

3

0
—ks
ka + k3
0
—ks

0
—k
0

ky

0
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Finite Elements Method Basics

Opah K @
@ kZ @ k3 @
Applying boundary conditions and load (U; =0, Us = Au, F; = Ty, F, =0,
F3 = —T,) conditions, we obtain global FE equilibrium equations
[ ke —ka 0 o o[ w 1 [rn=n |
—k4 kl + k2 + k4 —k2 —kl 0 U2 F2 =0
—ko ko + k3 0 —k; Us = F=-T
—kl 0 kl 0 U4 = F4
0 —k3 0 k3 U5 = AU F5
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FEM procedure

© FEM procedure
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FEM procedure

FEM procedure

I — P

/Aggregation, taking into account boundary

conditions, solving of equations

Discretisation
LI S PN
K! K?
® ©) ® / KU=F

Calculation of elements Calculation of forces (stresses)
stiffness matrix for finite elements

“ Wi - Wi Sl e

Kl u K2 u2
| —

K]ul—Fl Kzuz_Fz e
1—) - -
Klu1=Fl K2u2=F2
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FEM procedure

FEM procedure in Structural Analysis:
@ discretisation structure - divide structure ninto pieces,

o determine FE equations - describe the behaviour of the physical quantities
on each element,

@ aggregation - assemble the elements at the nodes to form an approximate
system of equationa for the whole structure,

@ applying boundary conditions - modification of the FE equations,

@ solving FE equations - solving the system of equations involving unknown
quantities (e.g., displacements),

@ calculate desired quantities - at selected elements (e.g., strains and
stresses).
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FEM procedure

/ ~
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~

7
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FEM procedure

The geometry of the element is defined by the placement of the nodal points.
Most elements used fairly simple geometries. In one-dimension, elements are
usually straight lines or curved segments. In two dimensions they are of triangular
or quadrilateral shape. In three dimensions the most common shapes are
tetrahedron, hexahedron.

Finite element geometry is often associated with its shape functions.
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FEM procedure

Types of finite elements

Bar Beam
) — ([ - 4
Membrane
Plate

L/
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FEM procedure

Finite elements in structural mechanics are respect to the original physical
structure. These elements are usually derived from Mechanics-of-Materials
simplified theories or from the subdivision of structural components viewed as
continua.

Elements has different sets of degrees of freedom (DOF). The degrees of freedom
specify the state of the element. They also function as ,handles” through which
adjacent elements are connected. DOFs are defined as the values (and possibly
derivatives) of a primary field variable at nodal points. For mechanical elements,
the primary variable is the displacement field and the DOF for many (but not all)
elements are the displacement components at the nodes.
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Local formulation

© Local formulation
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Local formulation

Most structural analysis problems can be treated as linear static problems, based
on the following assumptions:

o small deformations - loading pattern is not changed due to deformed shape,
@ elastic materials - no plasticity or failures,
o static loads - the load is applied to the structure in a slow or steady fashion.

Linear analysis can provide most of the information about the behaviour of

a structure and can be good approximation for many analyses. It is also bases of
nonlinear analysis in most of the cases.
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Local formulation

Consider a uniform prismatic bar with cross-sectional area A(x) and length /.
Material of bar has elastic-modulus E, g(x) is distributed load and T is
concentrated force.

)
~

E A(x) f— ———

This is one-dimension problem. One preferred dimension: the longitudinal
dimension or axial dimension is much larger that the other two dimensions,
which are collectively known as transverse dimensions. The intersection of
a plane normal to the longitudinal dimension and the bar defines the cross
sections. The longitudinal dimension defines the longitudinal axis x.

The bar resists an internal axial force (normal force) along its longitudinal
dimension.
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Local formulation

Using equilibrium requirements of infinitesimal part of bar dx, we have

F(x) F(x)+dF(x)
A‘(x) A(x’+dx) *

gy

—F(x) 4+ F(x) +dF(x) + g(x)dx = 0,
where F(x) and F(x) 4+ dF(x) are normal forces, A(x) and A(x + dx) are cross
section areas.
dF(x)
dx
0<x<L.

+4q(x) =0,
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Local formulation

Using stress-force relation

stress-strain relation (Hooke's law)
o(x) = Ee(x),

and strain-displacement relation (Cauchy strain tensor)

we state that
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Local formulation

Using formula
du(x)

Fi0 = A5,

our differential equation can be written as

5 (200%™ ) a0 =0,

0<x<L,

if the rigidity is constant EA = const., we have

d?u(x)
dx?
0<x<L.

EA

+4q(x) =0,
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Local formulation

Boundary conditions are

u(x =0)=0,
F(XZL)ZEAd—u =T= EAﬂ =T.
dx x=L X |x=L

A boundary condition which specifies the value of the function itself is a essential
boundary condition, or Dirichlet boundary condition (u has a known value).

A boundary condition which specifies the value of the normal derivative of the
function is a natural boundary condition, or Neumann boundary condition (g—;’
has a known value).
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Local formulation

Finally, the boundary problem has a form

& (200%22 ) a0 =0,

0<x<lL,
u(x =0)=0,
Fix=1L)= EAd—u =T.
dx |,
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Local formulation

The finite element method starts by rewriting the local formulation in an
equivalent variational form

(Au,v) = (q,v).

2
ddi(zx):q(x), 0<x<Ll ux=0)—0, A% —T

U
o dPu(x) L B
/o —EA e v(x)dx — /o q(x)v(x) dx = 0.

—EA

Function v(x) minimizes the functional and satisfies, at the same time, the
differential equation (Galerkin formulation).
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Local formulation

b =)

Application of integration by parts ([a’b = ab— [ab', a= —EA% o

. dx’
yields

[—EAdZ(;) v(x)]: - /OL—EAdL:J—iX)d‘;—iX) dx = /OLq(x)v(x) dx,

/0 EAdLC’i(XX)dZ(XX) dx = /0 a()v(x) dx + Tv(L).

The finite element method includes the boundary condition as integrals in
a functional that is being minimized, so the construction procedure is independent
of a particular boundary conditions of the problem.

Above equation is called Galerkin variational or weak form of the problem
defined by differential equation.
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Global formulation

© Global formulation
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Global formulation

The finite element equations of the bar will be derived from the minimum
potential energy principle.

In Mechanics of Materials it is shown that the internal energy density at a point

of a linear-elastic material is
1 ¢
U= [ =o' edV.
v2

For one-dimension state

E A(x) —T)—?
I L i
¢ *
1
U= —/O'E dv.
2)y

This U is also called the strain energy density.
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Global formulation

Stress o is to be regarded as linked to the displacement u through Hooke's law
and the strain-displacements relation

o(x) = Ee(x),
_ du(x)
elx) = dx

Integration over the volume of the bar gives the total internal energy

U= %/\/06 dv = %/LEA(X)€2(X) dx = %/LEA(X) (dz(;))z dx.

If the rigidity is constant EA = const., we have

1 du(x)\?
U_EEA/L< dx ) dx,

in which all integrand quantities may depend on x.
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Global formulation

The external energy (equal to work) due to applied mechanical loads pools
contributions from two sources:

@ the distributed load g(x), this contributes a cross-section density of g(x)u(x)
because g(x) is assumed to be already integrated over the section

Ly = [aGutx)
L
@ any applied loads, the end load T would contribute Tu(L)
L = Tu(L).

Finally, in our case

Wel=lg+Llr— /Lq(x)u(x) dx + Tu(L).
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Global formulation

The total potential energy of the bar is given by
n=uv-w.

Mathematically this is a functional, it depends only on the axial displacement u(x).
For bar with distributed load an one force

N=U—L,—Ly = %EAA(dZ—iX)>2 dx — /q(x)u(x)dx— Tu(L).

L

The solution to the problem formulated in this way will be the displacement
function u(x), for which the potential energy I reaches the minimum.
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Shape functions

© Shape functions
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Shape functions

After solving the FEM equations, we get the values of the displacements (or other
unknowns) in nodes.

u 9
u(L/2)=?
9
u,
ul
1O) @e —z
0 L

How to determine the displacement in the middle of a finite element?

@ we can increase the number of finite elements so that the node is in the point
of interest,

@ we can set up some way of changing the displacement in the element and
describe it with a function (interpolation).
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Shape functions

u

0 I x

In the second case, the simplest function can be the linear function in form
u(x) = ax + b. For an element with a length of L, it must fulfil the following
conditions:

@ at the beginning of the finite element, for x = 0 must have the value u;
u(0)=a-04+b=uy,
@ at the end of the finite element, for x = L must be u»

ully)=a-L+b=uw.
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Shape functions

The above equations will allow us to determine the unknown coefficients a and b,
which are equal

U —
L )
b:U]_,

the displacement function in the element will take the form
U —u
u(x) = 2—2x + uy.
L
Notes:

@ it's easy to calculate such functions,
@ each element will have a different approximation function,

o coefficient a has no physical interpretation.

PhD MSc Eng. Stawomir Koczubiej Fundamentals of Finite Elements Method 56/116



Shape functions

Can functions be calculated differently (better)? Let’s transform our function

u — u

1 1
u(x):Tlx+u1:u—L2x—%x+u1:u1 (l—zx)+U2 <ZX)’

let X p
N]_(X):].fz, NQ(X):Z,
we can write
u(x) = Ny(x)ur + No(x)wo.

Function u(x) is a linear combination of expressions Ny(x), N>(x) and nodal
displacements uy i ws.
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Shape functions

Let's check the properties of expressions Ni(x) i No(x):

@ forx=0 0
N1(0):1—Z=1, N»(0) = - =0,

o forx=1L

=Y
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Shape functions

Functions Ni(x) i Na(x) are linear Lagrange interpolation functions. In FEM
interpolation functions are named shape functions.

Other types of interpolation functions are also used, for example Hermit
polynomials, Serendip polynomials.

u

q
=Y
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Shape functions

The general form of Lagrange interpolation can be written as
up(x) = Z Np,i(x)ui = Npo(x)to + Npa(x)ur + Npo(xX)uz + ... + N o (X)tn,
i=0

where n determines the degree of interpolative polynomial, and i is function
number.

Notes:
@ function u(x) has transparent structure, it consists of similar parts,

@ each part is the product of displacement in the node u; (a value that has
a physical interpretation) and the shape function N;(x) ,

@ the value of the shape function N;(x) represents the displacement u;
contribution to the displacement value u(x),

@ functions N;(x) will be the same for all elements of the same type (depend
only on its length),

o the functions N;(x) will be the same for each degree of freedom.
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Shape functions

The Lagrange interpolation functions (Lagrange base functions) has a general form

Noi(o) = [[ X228 = xo0dxms) o (X = xima)(x =)o (x = )

= XX (xi = x0)(xi = x1) ... (xi = xi—1)(Xi = Xi41) -+ (Xi = Xn)’
J#i

= Tzﬁ \
® ® * ® ® ® *
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Shape functions

Notes:

@ ,broken lines" of interpolation in elements replace the real continuous
displacement function,

@ each continuous function can be approximated with any accuracy,
@ the more elements, the better results.
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Shape functions

Shape function N;(x) associated with node i of element must satisfy the following
conditions:

@ interpolation condition - takes a unit value at node /, and is zero at all
other nodes,

@ local support condition - vanishes over any element boundary (a side in 2D,
a face in 3D) that does not include node 7,

@ interelement compatibility condition - satisfies C® continuity between
adjacent elements over any element boundary that includes node i,

o completeness condition - the interpolation is able to represent exactly any
displacement field which is a linear polynomial, in particular, a constant value.
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Bar finite element

@ Bar finite element
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Bar finite element

Consider a uniform prismatic bar with cross-sectional area A(x) and length L. g(x)
is distributed load, T; and T, are concentrated forces.

The total potential energy of the bar is given by
n=u-L,

where U is strain energy

1 [t T
=1 / A(x) (u/ (%)) dx,
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Bar finite element

and L is external energy (work)
L n
L= / q(x)u(x) dx + Z FiQi.
0 i=1

F; is generalized nodal force, Q; is generalized nodal displacements (acting in the
direction of these forces).

Taking into account the geometry and the boundary conditions, we can discretize
bar in the following way

~> " EA |5 — 1015, EA, 5
— =2 [2] 20— >
v L F L, E, 0

T T T

u,=u(0)=0
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Bar finite element

Lets define the global vector of degrees of freedom Q ({e} — denoting column
vector, {e}T = [o])

Q={Q Q@ Q}={n w u},
and global vector of nodal forces F
F= {Fl F> F3}.

Vector Q included:
@ essential boundary conditions Q; = u; =0,
@ primary unknowns @, i Q3.
Vector F included:
@ natural boundary conditions F, = Ty i F3 = T,

@ secondary unknown F.
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Bar finite element

Total potential energy of the bar is the sum of the potential energy of the bar
parts (finite elements)

m
N=> ne=n"+n’
e=1

] >3 -
T Lt3 X

— — 7(x)

—
2

X
Fll U L' 2 [ F12 +u% L? F22 +u2

and we consider any finite element. For convenience, we define local coordinate
systems related to elements x©.
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Bar finite element

For finite element

s —

e(xe)
©) e ®
—_— E¢ A¢ —— —P
xe
F +u1 Le B +u2 x¢e (0, L)

we define vector of degrees of freedom Q¢
Q ={er @&}={u u},
and vector of nodal forces F¢
Fe={F F5}.
We can write the displacements u®(x®) as

S (x7) = NE(x)u + NS(x)u§ = NE(x%) @5 + N5(x) Q5.
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Bar finite element

In matrix form

u*(x") = N°(x)Q° = (@°)" (N“(x"))",
where N¢(x®) can be written as
N(x®) = [NP(x?)  N5(x7)],
and N5(x®) i N5(x®) are linear shape functions (Lagrange interpolation)

x¢ x¢

Ne(e) =170 Ns(x) = .

The derivative of the displacement function has the form

ule(Xe) — N/e(Xe)Qe — (Qe)T (N/e(Xe))T,

where
N'e(x%) = [Nr°(x)  N3(x°)],
and 1 1
re(. ey _ _ _— ey —
Nl (X)_ Le’ NZ(X) Le’
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Bar finite element

For a constant cross-section of a finite element A® (it can be different for each
element), total potential energy of the finite element e is

1 r o
"= EEQAQ/ (°(x%))” dx° - / g° (x)u(x) dx* — FEQ§ — F5 Q5.
0 0

Using Lagrange interpolation, potential energy can be written as
1 Le Le
Mne = §EeAe/ (Qe)T(N/e)TN/eQe dx® — / (Qe)T(Ne)qu dx® — (Qe)TFe —
0 0
Le Le
(Qe)T{EeAe/ (N/e)TN/e dXe}Qe o (Qe)T{ / (Ne)qu dx® + Fe} _
0 0

(Qe)TKeQe _ (Qe)T{Pe + Fe}'

NI = N
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Bar finite element

In formula 1
ne = 5(Qe)TKeqe _ (Qe)T{Pe + Fe}7
we denote:

@ stiffness matrix of the bar finite element
Le
Ke — EeAe/ (Nle(Xe))TNle(Xe) d)<e7
0
@ vector of equivalents of distributed load of the bar finite element
Le
P [ (N () 0
0
@ nodal forces vector of the bar finite element F¢,

o degrees of freedom vector (primary unknowns, nodal displacements) of the
bar finite element Q°.
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Bar finite element

Use of the interpolation u®(x®) caused, that the total potential energy of an
element is now a function of many (in our case two) variables M*(Q5, Q5) and the
equilibrium requirements (minimum of the potential energy) is as follows

one

Z_ -0

8Qf :8|-|e_ 9 1 e\Twene _ e\T [ pe e _
one _8m-4h>mF<JQ)KQ (Q){P+F}>—Q
Qs

which leads to the FEM equilibrium equations for the bar finite element
KeQe — Pe + Fe7

or
KeQe _ Re’

where we define total load vector of finite element

R® = P° 4 F°.
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Bar finite element

If E® = const. and A® = const. are constant, we have

1
g T 11
Ke _ EeAe/ (N/e(Xe))TN/e(Xe) dXe _ EeAe/ - - dXe _
0 0 1 Le e
Le
1 1 x® x® L
Le T l1e\2 T1e\2
Le 2 le 2 Le 2 le 2
e[| CF P g | B CEF
0 1 1 X X
(Le)> (Le)? (Lo (L)1
1 1
_ [pege Le Le
= E°A 1 1 ,
Le Le
EcAs _E’éAe
e Le Le
K® = B EeA® EcAe (1)
Le Le

PhD MSc Eng. Stawomir Koczubiej
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Bar finite element

For g® = const.

e e)2 Le Le
coreoref T E e [ [
e __ e e e je__ e e __ e _ e
P—CI/O(N)qu—q/0 * dx® =g (<) =q L]
Le 21e 0 2
q°Le
2
P = q°Le
2
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Bar finite element

Elements connectivity table has a form
Element | Node 1 Node 2

1 1 2
2 2 3

The continuity conditions of displacements in common nodes of finite elements,
allow us to write _

& Qi
Q=| @ |=]| @ =0
Qs Q3
1 2 3 1 1 1
1 @)
"l Pl Fl
2 Q = |+
g p2 -
3/ 0 Q,
K Q P F
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Bar finite element

. Ki Ki2 Kis Ki1 Ki 0
K=AK=| K Kp K |=|Khi Kh+Ki K,
Kai Kz Kz | | 0 K3 K3,
Global (structural) nodal forces vectors
(] [ P
P=AP=|p|=|r+r|,
P; P3
;) F}
F=AF=|F|=|FA+H
F3 F2
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Bar finite element

Global FEM equilibrium equations is

Ky Kb o[ & P} A
Ky Ku+Kh Kb Q| =| PR+FP |+ R
0 K221 K222 @3 'D22 Fs

Solution of the system of FEM equations requires consideration of boundary

conditions
Q=u(0)=0, =T, F=T,,

problem equations become

K KL, 0 0 P} F
Ko Kp+Kh Kh || @ |=|P+P|+| T
0 K31 K3, @ P3 T2
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Bar finite element

Solving FEM equations, we obtain nodal displacements Q> and @3 and nodal
force F;.

Using
@ Qf
Q=| & |=| =0 |,
Q3 3

and interpolation
e e e e e e e e Xe e Xe e
uf(x®) = N(x*)Qf + N3(x°)Q; = I_F Qf + Ie @,

we can write displacement functions

1.1y _ _Xl ' _
u(x)=11 I Q1+ Q> fore=1,
Vo _x2 2 B
u (x%) = |1 2 Q2+ Q3 fore=2.
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Bar finite element

Analysis of a bar discretized with two finite elements

k S — EA| 5+ — 015, EA,| )
s T, — TS B —
EA(x) — —— EOSC LR L e E
¢ + +
i L 4 L | u,=u(0)=0

Example data:

o [; =04m, o E =200GPa,
o [, =0.8m, @ g =10"N/m,
o Ay =05-10"3m?, o T; = 40kN,
o Ay =0.4-10"3m?, @ 7> =5kN.

Element e = 1: E' =200 GPa, A' = 0.5-10"3m?, L' = 0.4 m, g* = 10 kN/m,
250 —250 2
K =10° , Pl=10° :
—250 250 2
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Bar finite element

Element e = 2: £2 =200 GPa, A' = 0.4-1073m?, [2=0.8m, g = 10 kN/m,

K2 — 10° 100 —100 P2 _ 103 4
—100 100 |’ 4 |

Global stiffness matrix and vectors

250 —250 0
K=10°| —250 350 —100 |, P=10°]| 6 |,
0 —100 100 4
F
F=10%| 40
5
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Bar finite element

A set of FEM equations (boundary conditions taking into account)

250 —250 0 0 2 F
10°| —250 350 —100 Q | =10%| 6 | +10%| 40
0 —100 100 Qs 4 5

From equations 2 and 3 we can calculate displacements
@ =0.00022m, @5 = 0.00031 m.
From equation 1 we can calculate force (reaction)
Fi = —250-10°- @ —2-10% = —250- 10°- 0.00022 — 2 - 10* = —57 kN.

Global vector of nodal displacements is

Q1 0
Q=] @ | = 0.00022 |,
Qs 0.00031
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Bar finite element

and vectors of nodal displacements for elements are
Ql _ Ql _ Qil _ 0
Q Q3 0.00022 |’
Q= @ _ Q? _ 0.00022
Qs (73 0.00031
Displacement function
!
ut(xt) = <0—4> 0.00022 fore=1,

X2 x2
u?(x ):<1_ﬁ>000022+<0 )OOOO31 fore=2.
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Bar finite element

Displacement diagram

Au Q,=0.00031

Q,=0.00022

Ni(%)Q, N3(%)Q,

Q=0 L J©
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Bar finite element

Using
du(x)
dx ’

F=Ao, o=Esz, ec=
and
du(x)

F = AE
dx ’

forces function for both elements

F'(x') = EA'W (x) = EAY(NT' (x") @1 + N3'(x) Q2),
F?(x%) = EA?u(x) = EA?(N2(x?) Q2 + N2(x?)Qs).
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Bar finite element

Elemente=1, 1 =0.4m, Q. =0m, @ = 0.00022 m,

er-ee((-f)a (1))
=200-10°-5-107* (— (014> 0+ (014> 0. 00022) = 55kN.

Element e =2, [2 =0.8m, Q = 0.00022 m, @; = 0.00031 m,

F2(x2) = EA? (( ) Q@+ ( ) Qs) =

=200-10°-4-107* (— (018) 0.00022 + <018) 0. 00031) =9 kN.
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Bar finite element

Forces diagram

A
F 55 kN
q=10 kN/m
1=
(L'=0.4 m) T,=40 kN
q=10 kN/m
(L*=0.8 m) 9 kN
@ Ke) @, _, T=5kN
x=0 x=0.4 x=12 %

Caution! In the diagram forces sense are associated with the adopted coordinate system for finite
elements, this has nothing to do with the marking convention often used in the mechanics of

materials.

The results obtained by differentiating the displacement function are quite low
quality, (e.g. they do not ensure continuity at the boundaries of finite elements).
The quality of the solution can be improved by increasing the number of finite
elements or by using the higher order base functions.
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Bar finite element

" Real forces” diagram

A
57 kN

q=10 kN/m
(L'=0.4 m)
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Beam finite element

© Beam finite element
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Beam finite element

Self study example - beam finite element

e

_A_ *
} L }

M

("2

The total potential energy of the beam is given by

M= 36 J09 (" G0) dx = [ avt) e+ >0
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Beam finite element

oo 1T 7 B

(SR ET HE P
Pe Fe (s e
B L Freor
T hg

Vector of beam degree of freedom Q€ is

Q={0 & & GI={v o v &}
and nodal force vectors F€ is given by

FF={F F5 F5 F5}.
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Beam finite element

Assuming a constant moment of inertia for the whole element, the total potential
energy of the beam finite element is

Le Le
"= %Eef/ (v"*(x%))? dx"— / g°(x°)ve(x) dx"— F Q5 — FS Q5 — F5 Q5 — F5 Q5.
0 0
We use Hermite interpolation for displacement function
uf(x®) = NT(x)i 4+ N3(x)t + N3(x¥)vs + Ng(x®)e5 =
= NI(x%)QF + N3(x°) Q5 + N5 (x*) Q5 + Ng(x®) Q4
= N°(x)Q° = (Q@°)" (N*(x))",

where N¥(x®) can be written as
NE(x®) = [NP(x®)  N5(x%) N5(x?)  NE(x®)],

and N§(x®), N5(x®), N§(x®) i N§(x®) are shape functions.
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Beam finite element

Hermite shape functions have a form
e\ 2 e\ 3 e e\ 2
NE(x®) =13 (i-) +2 <’L<—) L NS(xE) = x° (1 —2 <)L<) + <)L<—> ) :
x¢\ 2 x¢&
w3 (5) -2 (%

[ew) s
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Beam finite element

The second derivative of the displacement function take the form

V//e(Xe) _ N//e(Xe)Qe _ (Qe)T (N//e(xe))T7

4

Le
2
L

Lxe
(L2
6 €

+

s T+

where
N//e(Xe) [N//e( e) N//e( e) N//e( e) N//e( e)]7
and
11e _ 6 12 e 11e ey _
Ny(x%) = (Le)2+(Le)3X’ No*(x%) =
/e ey 6 _ 12 e /e ey _ =
N3¢ (x®) = sz;ji zi};5§)< , N¢(x®) =

Using interpolation, potential energy can be written as
I—Ie
0
(Qe)TKeQe _ (Qe)T{Pe + Fe}'
PhD MSc Eng. Stawomir Koczubiej

Le Le
;EeJe/ (Qe)T(N//e)TN//eQe dx® — / (Qe)T(Ne)Tq
0
Le Le
;(Qe) {EeJe/ (N//e)TN//e dXe}Qe o (Qe)T{ / (Ne)qu dxe + Fe} _
0
1

(D

dx® — (Qe)TFe _
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Beam finite element

In formula 1
ne = 5(Qe)TKeqe _ (Qe)T{Pe + Fe}7
we denote:

@ stiffness matrix of the beam finite element
Le
K¢ = EeAe/ (N”e(xe))TN”e(xe) dx®,
0
@ vector of equivalents of distributed load of the beam finite element
Le
P [ (N () 0
0
@ nodal forces vector of the bar finite element F¢,

o degrees of freedom vector (primary unknowns, nodal displacements) of the
bem finite element Q°.
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Beam finite element

Use of the interpolation u®(x®) caused, that the total potential energy of an
element is now a function of four variables Me(Q%, Q5, Q5, QF) and the equilibrium
requirements (minimum of the potential energy) is as follows

are
Z_ =0
0Q;
8I'Ie_0
6Q§_ _8|—|e_ 0 1 e\Twene e\T e e _
e =350 ="~ 70¢ (2(Q) K*Q® — (Q°)"{P*+F°} | =0,
Qs
are
=0
0Qg

which leads to the FEM equilibrium equations for the beam finite element
KeQe — Pe + Fe7

or
e e __ e e __ e e
K*Q® = R%, R®=P°+F¢
where we define total load vector of finite element R®.
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Beam finite element

If E®¢ = const. and J® = const. are constant, we have

LE
Ke = EeJe/ (N//e(Xe))TN//e(Xe) dx® =
0

B 6 12x€ 7
ROHDE
4 n 6x¢
Le T e T 1e\2 e e
:EeJe/ Le  (Le)? [_ 6 +12X _i+6x
; 6 12x° (L2 " (L) I (Le)?
(L) (L)
2 6x¢
MO
6 12x¢ 2 6x¢®

mfmiﬁﬁm#ﬁ
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Beam finite element

after integration, stiffens matrix of beam finite element is

r 12E¢J¢ 6E°J® _ 12E¢J¢ 6E°J®T
(L) (L) (L) (Le)?
6E°cJ® 4E€J¢ _6EeJe 2E¢J¢
(Le)2 Le (Le)Z Le

_12EeJe _6EeJe 12E¢€J¢ _6EeJe
(Le)? (L2)? (Le)? (L2)?
6E°cJ® 2E¢J® 6E°J® 4E€ J¢

(Le)2 Le (Le)Z Le

Ke =
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Beam finite element

For g* = const.

Pe:qe/
0

PhD MSc Eng. Stawomir Koczubiej

Le

Le
(Ne)qu dx® = qe/
0

Fundamentals of Finite Elements Method

7N
Py e
o
~
N
~_—
L

N

7N
X
m|m

N

7 N\

1S

=%
N———
N>

o

dx¢,
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Beam finite element

after integration
qe L7
2
qe(Le)2
12
Pe = qe Le

2
g°(L°)?

L 12

Further proceedings: aggregation, taking into account of boundary conditions,
solving of equations are analogous to procedure described for bar elements.
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Analysis of a beam discretized with two finite elements
Ty W
L EJx) —

X
}

l L,
’

M

"2

Example data:
o J1:5-10_5m4
thickness: 10 mm
) J2:1-10_4m4
thickness: 10 mm

I-beam 260 x 135 mm, web thickness: 7 mm, flange

I-beam 330 x 160 mm, web thickness: 7 mm, flange

~— N — —

ol 6 o E =200 GPa,
2 ! o M =20kNm.
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Beam finite element

AY
O] U, @”! ! 3|®
Fzgo ) EJ 1] h(,< ) E ], [2] . —
¢ 7z e,
F, ! F, 2 F| ™
0,=0 v,=0 0,=0
! L l L2 !
T T T

Lets define the global vector of degrees of freedom

Q={& Q@ & Q4 & QG}={vi v1 v ¢ v @3},

and global vector of nodal forces

F={R FH F F F F).
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Beam finite element

y
y
m u]o e %o
F, o -~ o -
v ( — C LIADRN € DL -G ) —=
F F, ’ F, A
N S S o=0 To,=0 *lo=0
} L } L | } L } L2 |
. : ' . : '

Vector Q included:

@ essential boundary conditions Q1 = vy = Q3 =vo = Qs = v3 =0,
@ primary unknowns @, Q4 i Q.

Vector F included:
@ natural boundary conditions F, =M, F, =01 Fe =0,

@ secondary unknowns Fi, F3 i Fs.
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Beam finite element

Elements connectivity table has form

Element ‘ Node 1 Node 2
1 1 2
2 2 3
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Beam finite element

Global (structural) stiffness matrix is

K111 K112 K113 K114 0 ol [ Q 1 [ Pl1 1 [ F1 1
K211 K212 K213 K214 0 0 Q2 Pz1 Fa
K K312 Ki+Kh K+ KL K KE, @ _ 'Dal + P + Fs
K411 KA%Q K413 + K221 K414 + K222 K223 K224 Qa Pj + P22 Fa
0 0 K??l K322 K§3 K324 @ P32 Fs

L O 0 Kfl ng Kf3 Kzil 11 @ | L 'Dz% J L Fo |

Solution of the system of FEM equations requires consideration of boundary
conditions

U=@Q=QQ=0, L=M F=F=0,
problem equations become

KL Ki, K KL, 0 0 0 Pl Fy
Kn Ky o Ky Koa o o0 Q P; M
Ki Ky Kip+Kh Ku+KL KL KG 0 _ P; + Pt + Fs
K411 K412 K413 + K221 K414 + K222 K223 K224 Qa Pz} + 'D22 0
0 0 K2 K2, K% K2, 0 P2 Fs
0 0 Kfl Kf2 Kf3 Kf4 Qs P, f 0
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Beam finite element

Element e = 1: E1 =200GPa, J1=5-10"°m*, L1 =6m, q' =0,

5556  16.167 —b5.556  16.667
16.167  66.667 —16.167  33.333
—5.556 —16.167 5.556 —16.167
16.167  33.333 —16.167  66.667

K! = 10° . Pl=

o O o o

Element e = 2: £2 =200GPa, J2=1-10"*m* [2 =8m, g? = 10 N/m,

4688 18.75 —4.688  18.75 —4.000

K2 — 105 18.750 100.00 -18.750  50.00 P2 _ 10* —5.333
—4.688 —18.75 4.688 —18.75 |’ —4.000

18.750  50.00 —18.750 100.00 5.333
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Beam finite element

After aggregation we have

5556  16.167 —5.556  16.667 0 0 0
16.167  66.667 —16.167  33.333 0 0 Q
LoF. | 5556 —16667 10243 2083 4688 18750 0| _
16.667  33.333  2.083 166.667 —18.750  50.000 Qs
0 0 —4.688 —18.750  4.688 —18.750 0
0 0 18750  50.000 —18.750  100.000 Qs
_ o1 A1
0 20
ot | %000 | | B
—5.333 0
—4.000 Fs
5333 | | 0 |

From equation 2, 4 i 6 we can calculate displacements

66.667  33.333 0 @ 2.000
10°- | 33.333 166.667 50.000 Q | =10*-| —5333 |,
0 50.000 100.000 Qs 5.333

@2 =0.0066rad, Q4 =-0.0072rad, Q = 0.00893 rad.
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Beam finite element

From equations 1, 3 i 5 we can calculate forces

F, = 16.667 - 10° - Q + 16.667 - 10° - Q = —1 kN,

F3 = —16.667-10°- @, +2.083-10%- Q4 +18.75-10° - Qs + 4 - 10* =
= 44.25 kNm,

Fs = —18.75-10° - Q4 — 18.75-10° - Q¢ + 4 - 10* = 36.75 kN.

Global vector of nodal displacements is

[ Q] [ 0|
Q 0.0066
a=| @ | = °,
Qs —0.0072
Qs 0
| Q| | 0.00893 |
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Beam finite element

and vectors nodal displacements for elements are

Q [ Qf 0
Qo | @|_| @ |_| 00066
@3 Q3 0|’
| Q| | Q| | —0.0072 |
o] (@] [ 0]
Q- Q | | @& | _ | —00072
Qs Q3 0
| Q| | @ | | 0.00893 |

PhD MSc Eng. Stawomir Koczubiej Fundamentals of Finite Elements Method 109/116



Beam finite element

Displacement function

X:l X:l
1-2(— — 0.0066
g +<6)> "
1 2

1
( % + %) ~0.0072) fore—1,

2(X

1-2 %2 +<§)>( 0.0072)+

x2 x2 2
§> + §> 0.00893 for e = 2.
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Beam finite element

Displacement diagram
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Beam finite element

Forces diagram

53.33 kNm

@ 1kN @ ®
x+0 XE [2] x=14

=Y

\
-20 kNm 26 kNm
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Beam finite element

” Real forces” diagram

80 kNm 36.75 kN
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What'’s next?

© What's next?
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What’s next?

Final project

Extend the SimpleFEM program (available from the website
www.tu.kielce.pl/~sk/erasmus) for a linear analysis of beams.

P
EXE Y WAHEE F:I‘)» Y ?"
? 5 cm £ Am h—ﬁ Q:% G am 4m
o P Iy o &T_,q* 2’" :
c *im 4m (- D 8m Any 6n 7

P B T 1Tg
M
&1 & = CF NRMy aMARR SRR
€7l dm 6w, f 4y S 6wy
P= 60 kN M=26 Lhwm a,° 30 kN/m Ez 240 6P
AD T80 an 8- 1200 wm T 225 om 03 I2homm EDITKowm F? TAGO mm
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What's next?

Students wishing to enhance knowledge of the Finite Elements Method should be
interested in the following topics:

@ Elements in Space.

Two-Dimensional Problems.
Isoparametric Representation.

FEM Convergence Requirements.
Solving FEM Equations.

Geometrical and Physical Non-Linearity.
Stability Analysis.

Dynamic Analysis.

¢ € €6 ¢ ¢ ¢ ¢
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